# Stability-indicating Reversed-phase High-performance Liquid Chromatography Method for the Determination of Fluorometholone in Bulk and Pharmaceutical Formulation

# S. Hemchand<sup>1</sup>, R. Ravi Chandra Babu<sup>1</sup>, Mukthinuthalapati Mathrusri Annapurna<sup>2</sup>,

<sup>1</sup>GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India, <sup>2</sup>Department of Pharmaceutical Analysis & Quality Assurance, GITAM Institute of Pharmacy, Visakhapatnam, Andhra Pradesh, India

#### Abstract

**Introduction:** A new stability-indicating liquid chromatographic method has been established for the determination of Fluorometholone. Fluorometholone is used for the treatment of eye diseases. **Materials and Methods:** The Shimadzu Model CBM-20A/20Alite high-performance liquid chromatography (HPLC) system was monitored at detection wavelength 241 nm on isocratic mode with flow rate 0.8 mL/min, and the total run time is 10 min. Chromatographic separation was achieved through Phenomenex Luna  $C_8$  column (250 mm × 4.6 mm i.d., 5 µm particle size). The method was validated and stress degradation studies were conducted. **Results and Discussion**: Fluorometholone has obeyed Beer-Lambert's law over a concentration range 0.5–100 µg/mL with linear regression equation, y = 70155x + 31667 and correlation coefficient of 0.9996. The limit of detection and limit of quantitation are found to be 0.1617 µg/mL and 0.4502 µg/mL, respectively, and the % RSD in precision, accuracy, and robustness studies was found to be less than 2%. Fluorometholone was found to be highly resistant toward all degradation conditions such as acidic, alkaline, thermal, and oxidation. **Conclusions:** It is concluded that the proposed reversed-phase HPLC method is accurate, precise, sensitive, and reproducible for the determination of Fluorometholone in pharmaceutical formulations, and the method was validated as per ICH guidelines.

Key words: Fluorometholone, ICH guidelines, reversed-phase high-performance liquid chromatography, stability-indicating, validation

# INTRODUCTION

luorometholone [Figure 1] is а corticosteroid used after laser-based refractive surgery.<sup>[1]</sup> Fluorometholone (FLM) is a glucocorticoid employed in the treatment of allergic and inflammatory conditions of the eye. It is available with brand names FLOSOFT (Cipla), flurisone (Label claim: 0.1% and 0.25%) (MicroVision), and FML (Allergan India Ltd) eye drops. Only one high-performance liquid chromatography (HPLC) method<sup>[2]</sup> is available in the literature and the authors have developed a stabilityindicating reversed-phase HPLC (RP-HPLC) method for the determination of FLM in the present study and the method was validated.<sup>[3]</sup>

# **MATERIALS AND METHODS**

## Chemicals and reagents

Methanol, sodium hydroxide, hydrochloric acid, acetic acid, and hydrogen peroxide  $(H_2O_2)$  were purchased from Merck

Address for correspondence: S. Hemchand, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam, India. E-mail: Hemchand.suryadevara@gmail.com

**Received:** 12-06-2018 **Revised:** 21-06-2018 **Accepted:** 30-06-2018

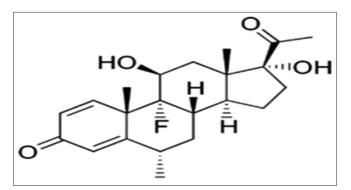



Figure 1: Structure of Fluorometholone

(India). All chemicals are of HPLC grade. All chemicals were of analytical grade and used as received.

#### Instrumentation and chromatographic conditions

Chromatographic separation was achieved using Shimadzu Model CBM-20A/20Alite HPLC system equipped with SPD-M20A prominence photodiode array detector with C<sub>8</sub> Phenomenex Luna column (250 mm × 4.6 mm i.d., 5  $\mu$ m particle size) maintained at 25°C. Isocratic elution was performed using 0.1% acetic acid and methanol (20:80%, v/v) and the flow rate was 0.8 mL/min. The detection was carried at 241 nm. 20  $\mu$ L of sample was injected into the HPLC system, and all chromatographic conditions were performed at room temperature (25°C±2°C). Stock solution of Fluorometholone (1000  $\mu$ g/mL) was prepared with mobile phase, and further dilutions were made after filtering through 0.45  $\mu$ m membrane filter.

#### Method validation

A series of solutions (0.5–100  $\mu$ g/mL) were prepared from Fluorometholone stock solution, and 20 µL of each solution was injected into the HPLC system. The peak area of the chromatogram was noted, and calibration curve was plotted by taking the concentration of the solutions on the x-axis and the corresponding peak area values on the y-axis. The intraday precision and the interday precision studies were conducted at three concentration levels (10, 20, and 50 µg mL) on three different days, that is, day 1, day 2, and day 3, and the % RSD was calculated. The accuracy of the assay method was evaluated (80%, 100%, and 120%) using standard addition method and recovery experiments. The robustness of the assay method was established by introducing small changes in the HPLC conditions such as wavelength (239 and 243 nm), percentage of methanol in the mobile phase (78% and 82%), and flow rate (0.7 and 0.9 mL/min) with 10 µg mL of Fluorometholone. The limit of quantification and limit of detection were based on the standard deviation of the response and the slope of the

constructed calibration curve (n = 3), as described in ICH guidelines Q2 (R1).<sup>[3]</sup>

#### Stress degradation studies

Forced degradation studies were performed to evaluate the stability indicating properties and specificity of the method.<sup>[4]</sup> All solutions for stress studies were prepared at an initial concentration of 50  $\mu$ g/mL of FLM and refluxed for 60 min at 80°C and then diluted with mobile phase.

Acidic degradation was performed by treating the drug solution (50 µg/mL) with 0.1 MHCl for 60 min in a thermostat maintained at 80°C. The stressed sample was cooled, neutralized with NaOH and then diluted with mobile phase as per the requirement. 20 µL of this solution was injected into the HPLC system. Alkaline degradation was performed by treating the drug solution (50  $\mu$ g/mL) with 0.1 N sodium hydroxide for 60 min in a thermostat maintained at 80°C. The stressed sample was cooled, neutralized with HCl and then diluted with mobile phase as per the requirement, and 20 µL of the solution was injected into the HPLC system. Oxidation degradation was performed by treating the drug solution (50  $\mu$ g/mL) with 30% H<sub>2</sub>O<sub>2</sub> for 60 min in a thermostat maintained at 80°C. The drug solution mixture was cooled and then diluted with mobile phase as per the requirement, and 20 µL of the solution was injected into the HPLC system.

#### Assay of Fluorometholone

The available marketed formulations were collected from the local pharmacy store and extracted with mobile phase for Fluorometholone. The contents of the volumetric flask were sonicated for 30 min, filtered and diluted with mobile phase as per the requirement. 20  $\mu$ L of these solutions were injected into the system after filtering through 0.45  $\mu$ m membrane and the peak area was recorded from the respective chromatogram.

# **RESULTS AND DISCUSSION**

#### Method development and optimization

A simple stability indicating RP-HPLC method has been developed for the determination of Fluorometholone. During the optimization process the column, flow rate, mobile phase composition was selected based on the system suitability parameters. Enable C18 column has shown good number of theoretical plates [Figure 2], but the peak is not sharp and symmetrical due to its tailing factor (>2), and therefore, Phenomenex Luna C<sub>8</sub> Column [Figure 3] was tried where the system suitability parameters were within acceptable

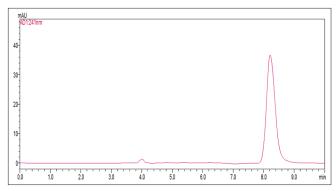



Figure 2: Enable C18 column (Rt8.220)

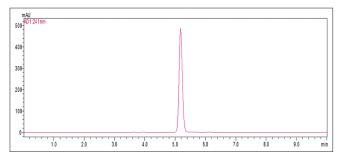



Figure 3: Phenomenex Luna C8 column (Rt 5.158) (method optimized)

criteria [Table 1]. Then, the mobile phase composition [Table 2 and Figure 4] and flow rates [Table 3 and Figure 5] were monitored. Mobile phase containing 0.1% acetic acid: Methanol (20:80, v/v) with flow rate of 0.8 mL/min has shown a sharp peak at 5.158 min for Fluorometholone.

## **Method validation**

Fluorometholone has shown linearity  $0.5-100 \mu g/mL$  [Table 4] with % RSD 0.18–0.93 and the chromatographic response was shown in Figure 6. The linear regression equations were found to be y = 70155x + 31667 (R<sup>2</sup> = 0.9996). The % RSD in intraday and interday precision and accuracy were found to be 0.20–0.86, 0.66–0.82, and 0.30–0.81, respectively, with a percentage recovery 98.88–99.5 [Table 5]. The % RSD value in robustness study was also found to be <2.0% (0.62–1.04) indicating that the method is robust [Table 6].

#### Analysis of ophthalmic formulations

The proposed method was applied for the determination of FLM in marketed formulations[Figure 7]. The % recovery was found to be 98.0–99.0 [Table 7].

| Table 1: Optimization – selection of columns                |                      |                   |                   |                    |                                                   |        |
|-------------------------------------------------------------|----------------------|-------------------|-------------------|--------------------|---------------------------------------------------|--------|
| Column used                                                 | Retention time (min) | Mean<br>peak area | Tailing<br>factor | Theoretical plates | Remarks                                           | Figure |
| Enable C <sub>18</sub> column (150×4.6 mm, 5 $\mu$ m)       | 8.220                | 165790            | 2.579             | 3904.627           | Blunt peak<br>tailing factor >2                   | 2      |
| Phenomenex Luna C <sub>s</sub> column<br>(250×4.6 mm, 5 μm) | 5.158                | 715363            | 1.172             | 8948.819           | Peak is sharp<br>Rt is<6 min<br>tailing factor <2 | 3      |

|        | Table 2: Optimization – selection of mobile phase composition |                      |                      |              |                   |                    |                                   |  |
|--------|---------------------------------------------------------------|----------------------|----------------------|--------------|-------------------|--------------------|-----------------------------------|--|
| Trials | Mobile phase composition (v/v)                                | Flowrate<br>(mL/min) | Retention time (min) | Peak<br>area | Tailing<br>factor | Theoretical plates | Comment                           |  |
| 1      | 0.1% acetic acid:methanol (40:60)                             | 0.8                  | 16.05                | 214687       | 1.388             | 10635.83           | Broad peak                        |  |
| 2      | 0.1% acetic acid:methanol (30:70)                             | 0.8                  | 8.023                | 314019       | 1.262             | 11175.22           | Peak tailing                      |  |
| 3      | 0.1% acetic acid:acetonitrile (25:75)                         | 0.8                  | 8.042                | 1254786      | 1.625             | 4257.94            | Peak tailing                      |  |
| 4      | 0.1% acetic acid:methanol (20:80)                             | 0.8                  | 5.158                | 715363       | 1.172             | 8948.82            | Sharp peak<br>method<br>optimized |  |

| Table 3: Optimization – selection of flow rate |                       |                                   |          |              |                |                    |                                   |  |
|------------------------------------------------|-----------------------|-----------------------------------|----------|--------------|----------------|--------------------|-----------------------------------|--|
| Trials                                         | Flow rate<br>(mL/min) | Mobile phase composition (v/v)    | Rt (min) | Peak<br>area | Tailing factor | Theoretical plates | Comments                          |  |
| 1                                              | 0.6                   | 0.1% acetic acid:methanol (20:80) | 16.05    | 214687       | 1.388          | 11175              | Broad peak                        |  |
| 2                                              | 0.7                   | 0.1% acetic acid:methanol (20:80) | 8.042    | 1254786      | 1.625          | 4258               | Peak tailing                      |  |
| 3                                              | 0.8                   | 0.1% acetic acid:methanol (20:80) | 5.158    | 715363       | 1.172          | 8949               | Method<br>optimized<br>sharp peak |  |

#### Stress degradation studies

The overlay typical chromatogram obtained following the assay of stressed samples was shown in Figure 8. Very slight

| Table 4:                 | Linearity of Fluorometholo | one     |
|--------------------------|----------------------------|---------|
| Concentration<br>(µg/mL) | *Mean peak area±SD         | RSD (%) |
| 0.5                      | 51458±157.357              | 0.18    |
| 1                        | 102917±257.292             | 0.25    |
| 5                        | 393813±1260.20             | 0.32    |
| 10                       | 716538±3439.38             | 0.48    |
| 20                       | 1411702±3105.74            | 0.22    |
| 50                       | 3645878±21510.68           | 0.59    |
| 100                      | 6999612±65096.39           | 0.93    |

\*Mean of three replicates

decomposition (<5%) was observed when FLM drug was exposed to alkaline, thermal, acidic, and oxidative degradations [Table 8]. The 3D chromatograms were shown in Figure 9. The system suitability parameters are within acceptable criteria.

## **CONCLUSION**

The proposed stability-indicating liquid chromatographic method can be applied for the determination of Fluorometholone in eye drops, and the drug is highly resistant toward all degradations.

# ACKNOWLEDGMENT

The authors are grateful to Allergan and M/s GITAM (Deemed to be University), Visakhapatnam for providing the research facilities. There is no conflict of interest.

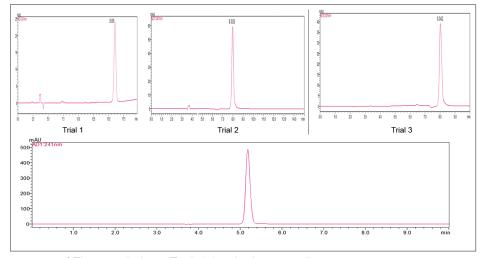



Figure 4: Chromatograms of Fluorometholone (Trial 4) (method optimized)

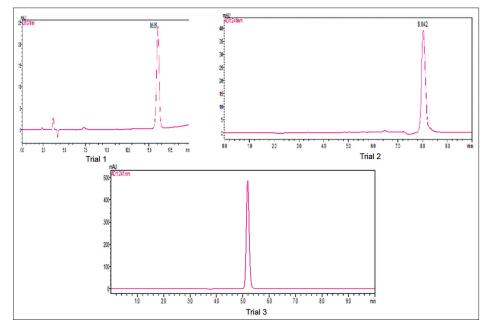



Figure 5: Chromatograms of Fluorometholone (Trial 3) (method optimized)

| Table 5: Precision and accuracy studies of Fluorometholone |          |                            |                             |                            |  |  |  |  |
|------------------------------------------------------------|----------|----------------------------|-----------------------------|----------------------------|--|--|--|--|
| Concentration                                              |          | Intra-day precision        |                             |                            |  |  |  |  |
| (µg/ml)                                                    | *Mean pe | ak area ± SD (%RSD)        | *Mean peak area ± SD (%RSD) |                            |  |  |  |  |
| 10                                                         | 715363   | 715363.24±1430.72 (0.20)   |                             | .26 (0.82)                 |  |  |  |  |
| 20                                                         | 1425734  | 1425734.16±12261.31 (0.86) |                             | 1484341.00±9796.65 (0.66)  |  |  |  |  |
| 50                                                         | 3658469  | 3658469.00±15731.41 (0.43) |                             | 3692472.67±28062.79 (0.76) |  |  |  |  |
| Accuracy                                                   |          |                            |                             |                            |  |  |  |  |
| Spiked                                                     | Total    | *Mean peak area±SD         | Drug Found                  | %                          |  |  |  |  |
| 0.8 (80)                                                   | 1.8      | 327841.27±2655.51 (0.81)   | 1.78                        | 98.88                      |  |  |  |  |
| 1 (100)                                                    | 2        | 2 357057.52±2178.05 (0.61) |                             | 99.5                       |  |  |  |  |
| 1.2 (120)                                                  | 2.2      | 477407.47±1432.22 (0.30)   | 2.18                        | 99.09                      |  |  |  |  |

\*Mean of three replicates

| Table 6: Robustness study of Fluorometholone                       |           |                    |                               |  |  |  |
|--------------------------------------------------------------------|-----------|--------------------|-------------------------------|--|--|--|
| Parameter                                                          | Condition | *Mean<br>peak area | *Mean peak area±SD<br>(% RSD) |  |  |  |
| Flow rate (±0.1 mL/min)                                            | 0.7       | 705729             | 708280.33±4391.33 (0.62)      |  |  |  |
|                                                                    | 0.8       | 716538             |                               |  |  |  |
|                                                                    | 0.9       | 702574             |                               |  |  |  |
| Detection wavelength (±2 nm)                                       | 239       | 708457             | 712947.33±6630.41 (0.93)      |  |  |  |
|                                                                    | 241       | 716538             |                               |  |  |  |
|                                                                    | 243       | 713847             |                               |  |  |  |
| Mobile phase composition<br>(0.1% acetic acid: methanol) (±2% v/v) | 18:82     | 714873             | 713745±7422.94 (1.04)         |  |  |  |
|                                                                    | 20:80     | 716538             |                               |  |  |  |
|                                                                    | 22:78     | 709824             |                               |  |  |  |

\*Mean of three replicates

| Table 7: Analysis of Fluorometholone in ophthalmic formulation |                          |                                                 |  |  |  |
|----------------------------------------------------------------|--------------------------|-------------------------------------------------|--|--|--|
| FormulationLabeled claim (%)Amount found* (%)Recover           |                          |                                                 |  |  |  |
| 0.1                                                            | 0.098                    | 98.0                                            |  |  |  |
| 0.1                                                            | 0.099                    | 99.0                                            |  |  |  |
|                                                                | Labeled claim (%)<br>0.1 | Labeled claim (%) Amount found* (%)   0.1 0.098 |  |  |  |

\*Mean of three replicates

|                         | Table 8: Str       | ess degradation stud   | lies of Fluorometholone |                    |                   |
|-------------------------|--------------------|------------------------|-------------------------|--------------------|-------------------|
| Stress conditions       | *Mean<br>peak area | *Drug<br>recovered (%) | *Drug<br>decomposed (%) | Theoretical plates | Tailing<br>factor |
| Standard drug (control) | 3645878            | 100                    | -                       | 9414.140           | 1.162             |
| Acidic degradation      | 3545415            | 98.20                  | 1.8                     | 8047.210           | 1.228             |
| Alkaline degradation    | 3439943            | 98.12                  | 1.88                    | 8123.215           | 1.136             |
| Oxidative degradation   | 3466384            | 96.64                  | 3.36                    | 8445.845           | 1.166             |
| Thermal degradation     | 3556739            | 99.06                  | 0.94                    | 8405.603           | 1.164             |

\*Mean of three replicates

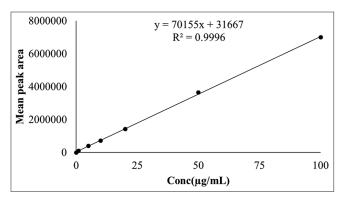
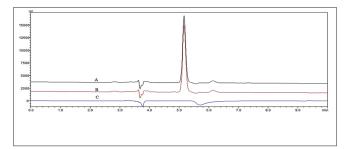
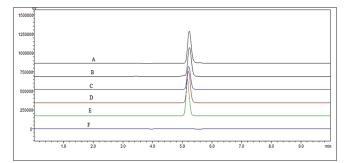
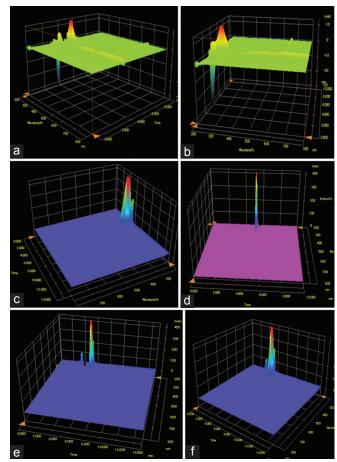





Figure 6: Calibration curve of Fluorometholone




**Figure 7:** Typical chromatograms of (A) FLM standard (1  $\mu$ g/mL) (Rt= 5.157) (B) blank (C) flurisone (label claim 0.1%) (1  $\mu$ g/mL) (Rt= 5.164)



**Figure 8:** Overlay chromatograms of Fluorometholone acidic (A) alkaline (B) oxidation (C) thermal (D) standard (50 µg/mL) (E) and blank (F) degradations

## REFERENCES

 Budavari S. The Merck Index, An Encyclopedia of Chemicals, drugs and Biologicals. 14<sup>th</sup> ed. Whitehouse Station, NJ: Merck Research Laboratories Division of Merck and Co., Inc; 2006. p. 4175, 714.



**Figure 9:** 3D chromatograms of Fluorometholone, (a) Fluorometholone standard (1  $\mu$ g/mL), (b) flurisone, (c) acidic degradation, (d) thermal degradation, (e) alkaline degradation, (f) oxidation degradation

- Jonvel P, Andermann G. Determination of Fluorometholone Purity by very high-performance liquid chromatography. Analyst 1983;108:411-4.
- ICH Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference on Harmonization; 2005.
- ICH Guidelines, Q1A (R2): Stability Testing of New Drug Substances and Products (revision 2). International Conference on Harmonization; 2003.

Source of Support: Nil. Conflict of Interest: None declared.