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Abstract

Background: In recent times, cancer has emerged as a major health concern. It was established that every 
antagonist of the dihydrofolate reductase exhibits anti-cancer activity. For anti-cancer action, several Schiff-based 
derivatives with azetidinone rings were designed and docked against the dihydrofolate reductase protein (PDB 
id:6CXK) in the current work. The ligands were compared to those of standard antagonists of dihydrofolate 
reductase, that is, trimethoprim and pyrimethamine. Materials and Methods: The ligands were drawn in.mol 
format using ChemSketch software and converted to.pdb format using Avogadro software. The iGEMDOCK 
software was utilized to conduct molecular docking investigations, and Discovery Studio Visualizer was ultimately 
used to visualize the results. Results and Discussion: Most compounds have demonstrated a better affinity for 
binding to the dihydrofolate reductase. Most of the ligands have demonstrated nearly the same binding affinities 
as that of the standard dihydrofolate reductase, such as trimethoprim (−102.1 kcal/mol) and pyrimethamine 
(−91.8 kcal/mol). The top 2 compounds 3A8B (−100.6 kcal/mol) and 3A9B (−94.6 kcal/mol) were chosen for 
visualization. Conclusion: Schiff base derivatives with azetidinone ring have the potential to be a promising 
class of drugs for the treatment of anti-cancer action since they have a higher binding affinity to the dihydrofolate 
reductase than standard antagonists.
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INTRODUCTION

Schiff base

Schiff bases are a significant class of 
medications, for the therapy of numerous 
diseases. They have been gaining 

importance since Hugo Schiff originally 
characterized Schiff’s base 160 years ago. 
A ketone or an aldehyde that contains a carbonyl 
group and has a nitrogen-based moiety is called 
a Schiff base. It is created by condensing a 
primary amine with the carbonyl group and 
substituting the carbonyl group with an imine 
group known as azomethine.[1-3] Particularly 

adaptable compounds with C = N (imine) groups are aniline-
Schiff bases, which have been shown to exhibit a wide range 
of biological functions,[4-7] antibacterial, antifungal,[8,9] anti-
cancer,[10] and anti-inflammatory.
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Azetidinone

Since the discovery of penicillin by Sir Alexander Fleming in 
1928 and the subsequent discovery of cephalosporin, both of 
which were employed as effective antibiotics, the chemistry of 
ß-lactams has assumed a significant role in organic chemistry. The 
emergence of bacterial resistance to commonly used antibiotics 
of this kind continues to encourage research in this field. 
Functionalized ß-lactams or novel active principles in the ß-lactam 
series are required. ß-lactam has antiviral,[11,12] antifungal,[13,14] 
antibacterial,[15,16] and anti-cancer activities.[17-20] Penicillins, 

cephalosporins, carbapenems, nocardicin, and monobactams are 
among the broad spectrum ß-lactam antibiotics[21,22] that share the 
2-azetidinone (ß-lactam) ring as a structural characteristic.

MATERIALS AND METHODS

Step 1

Schiff bases are the condensation products of aldehydes 
and amine compounds in the presence of glacial acetic acid 

Table 1: The interactions and binding energies of the top 10 ligands with the enzyme dihydrofolate reductase
Compound Code Binding Energy Kcal/mol Interacting active site amino acid residues
3A8B −100.6 ARG: 57 [2.61], ASN: 18 [3.10], TYR: 100 [2.59], 

ALA: 7 [2.94], LEU: 28, LEU: 54, MET: 16,  
PHE: 31, and ALA: 6

3A9B −94.6 ASN: 18 [2.80], ARG: 57 [2.77], LEU: 28, LEU: 54, 
ILE: 94, MET: 16, ASP: 27, and PHE: 31, 

3A5B −93.6 ASN: 18 [3.88], ARG: 57 [6.23], TYR: 100 [7.33], 
ILE: 94 [4.87], LEU: 54, LEU: 28, MET; 16,  
PHE: 31, LYS: 32, PRO: 55, MET: 20, GLU: 17, 
SER: 49, ILE; 50, ILE: 5, ALA; 6, and THR: 46

2A5B −90.6 ASN: 18 [4.12], ARG: 57 [6.28], ILE; 94 [4.39], 
LEU: 54, LEU: 28, PHE: 31, MET: 16, TYR: 100, 
THR: 46, ILE: 50, MET; 20, and LYS; 32

2A10B −90.2 ASP: 27 [4.76], THR: 113 [4.31], PHE: 31, ALA: 6, 
ALA; 7, ILE; 5, LEU: 28, TRP; 30, ILE: 50, THR; 46, 
MET: 20, GLU; 17, and LEU: 54

4A8B 89.8 ARG: 57 [6.34], LEU: 28, PHE: 31, ILE: 50,  
LEU: 54, ARG: 52, ASN: 18, ILE: 94, THR: 46, 
MET: 16, LYS: 32, ad PRO: 55, 

7A8B 89.6 ASN: 18 [4.79], ILE: 50 [4.98], ARG: 57 [6.48], 
PHE: 31, LEU: 54, ARG: 52, ILE: 94, THR: 46, 
MET: 16, LEU: 28, LYS: 28, and PRO: 55

3A4B −89.5 ASN: 18 [3.79], ARG: 57 [6.05], TYR: 100 [7.63], 
PHE: 31, MET: 16, LEU: 28, LEU: 54, LYS: 32, 
PRO: 55, MET: 20, GLU: 17, SER: 49, THR: 46, 
ILE: 50, ALA: 6, ALA: 7, and ILE: 94

4A10B −88.9 ASN: 18 [4.21], ARG: 57 [6.19], MET: 16,  
LYS: 32, PRO: 55, LEU: 54, LEU: 28, ILE: 50,  
GLU: 17, MET: 20, ALA: 6, ILE: 5, TYR: 100, ALA: 7,  
ad ILE: 94

3A3B −88.7 ASN: 18 [4.21], ARG: 57 [6.19], MET: 16,  
PHE: 31, ASP: 27, LYS: 32, PRO: 55, LEU: 54, 
LEU: 28, ILE: 94, ALA: 7, TYR: 100, MET: 20,  
ALA: 6, ILE: 5, GLU; 17, and ILE: 50

Trimethoprim −102.1 ASP: 27 [2.82], THR: 113 [3.26], PHE: 31, ALA: 7, 
ILE: 5, ILE: 50, MET: 16, and LEU: 28

Pyrimethamine −91.8 TYR: 100 [2.60], ILE: 5 [2.60], PHE: 31, ILE: 50, 
ILE: 94, and ALA: 7

Co‑crystalized ligand (Dihydrofolate) −101.8 ASP: 27 [3.90], ILE: 5 [3.81], MET: 16 [3.59],  
ARG: 57, LYS: 32, PHE: 31, ALA; 6, ALA: 7,  
TRP: 22, MET: 20, GLU: 17, ASN: 18, THR: 46, 
LEU: 54, PRO: 55, LEU: 28, GLU: 95, TRP: 30, 
THR: 113, ILE: 94, and TYR: 100
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and ethanol refluxed for 4 h after cooling the product and 
recrystallized by ethanol.

Step 2

Schiff base in the presence of chloroacetyl chloride, 
triethylamine, and dioxane gives azetidinone-derived Schiff 
base.

The Schiff base synthesis techniques were derived from the 
literature.[23-25] There have also been reports of alternative 
Schiff base synthesis techniques using azetidinone.[26-29] The 
method indicated above was used to select several substituted 
aromatic aldehydes and aromatic amines. Schiff bases have 
been designed by adding an azetidinone moiety, and the final 
products were designed by the approach. Using Swiss ADME 
software,[30-32] the ADME properties of designed ligands were 
predicted after they were screened using TopKat software[31-33] 
for in silico toxicity. Designed compounds with good ADME 
properties and anticipated non-carcinogenic and non-toxic 
compounds were chosen for molecular docking.

Molecular docking

The target was chosen based on the SWISS target 
prediction software.[31,34,35] Most of the compounds have 
shown dihydrofolate reductase as a potential target. Hence, 
dihydrofolate reductase is used for molecular docking.

ChemSketch software was used to sketch the ligand’s 2D 
structures, which were then saved in.mol format. Using the 
Avogadro tool,[31,35,36] the ligand structures in .mol format 
were converted into the .pdb format. Docking studies 
were conducted for the safe, non-carcinogenic developed 
compounds with good ADME features to evaluate binding 
poses and interactions. Hence, the present study aims to 
evaluate Schiff base derivatives for anti-cancer activity.

Figure 1: Cleaned dihydrofolate reductase enzyme – PDB ID: 6CXK
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Table 2: Docking and visualization data of standard antagonist trimethoprim against dihydrofolate  
reductase enzyme

Trimethoprim ligand Trimethoprim ligand+dihydrofollate reductase enzyme 
complex

Trimethoprim ligand+co‑crystal ligand overlap Trimethoprim ligand+whole dihydrofolate reductase 
enzyme

Trimethoprim ligand+2D interaction with dihydrofolate reductase 
protein

Trimethoprim 3D interactions with dihydrofolate 
reductase enzyme

Table 3: Docking and visualization data of standard antagonist pyrimethamine against dihydrofolate  
reductase enzyme

Pyrimethamine ligand Pyrimethamine ligand+dihydrofollate reductase enzyme complex

(Contd...)
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Table 4: Docking and visualization data of 3A8B ligand against dihydrofolate reductase enzyme

3A8B Ligand 3A8B Ligand+dihydrofollate reductase enzyme complex

3A8B Ligand+co‑crystal ligand overlap 3A8B Ligand+whole dihydrofolate reductase enzyme

3A8B ligand 2D interaction with 
dihydrofolate reductase protein

3A8B ligand 3D interactions with dihydrofolate reductase 
enzyme

Table 3: (Continued)

Pyrimethamine ligand+co‑crystal ligand overlap Pyrimethamine ligand+whole dihydrofolate reductase enzyme

Pyrimethamine ligand+2D interaction with 
dihydrofolate reductase enzyme

Pyrimethamine 3D interactions with dihydrofolate reductase enzyme
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iGEMDOCK was the program utilized for docking.[31,35,37] 
This software calculates the orientation and structure of 
ligands concerning the protein’s active site. To assess the 
molecular interactions of the chosen safe chemicals with 
the dihydrofolate reductase (Figure 1, PDB ID:6CXK) 
using a co-crystallized ligand inhibitor dihydrofolate that 
was retrieved from the protein data bank, in silico docking 
simulation studies were carried out.

The Discovery Studio Visualizer (Biovia) was used for 
visualization. An accurate docking method was chosen, and 
a standard docking protocol was adhered to. The optimal 
docking solutions were examined based on the scoring 
function. The scoring function uses a combination of 
hydrogen bonding, van der Waals, and electrostatic energies. 
To determine the interactions between the ligands and the 
target protein, post-docking interaction profile analysis of the 
best poses was carried out. Using Insilco toxicity prediction, 
safe and non-carcinogenic compounds were found and 
molecular docking was performed along with standard 
dihydrofolate reductase inhibitors such as trimethoprim[38-44] 
and pyrimethamine.[45-51] To assess binding affinities and 

Table 5: Docking and visualization data of 3A9B ligand against dihydrofolate reductase enzyme

3A9B ligand 3A9B ligand+dihydrofollate reductase enzyme complex

3A9B ligand+co‑crystal ligand overlap 3A9B ligand+whole dihydrofolate reductase enzyme

3A9B ligand+2D interaction with dihydrofolate 
reductase protein

3A9B ligand 3D interactions with dihydrofolate reductase 
enzyme

Table 6: Pocket analysis and binding modes of 
3A8B, 3A9B, trimethoprim, and pyrimethamine

3A8B 3A9B

Trimethoprim Pyrimethamine
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molecular interactions, docking simulations were performed. 
For the post-docking interaction investigation, the top 2 
compounds were selected based on their superior binding 
energies and molecular interaction profiles.

RESULTS AND DISCUSSION

The top 2 ligands’ structures that have superior binding 
energies have been chosen for visualization.

CONCLUSION

Table 1 In conclusion, the binding energies of all of the top 
10 compounds were nearer to the binding energies of the 
standard antagonists of the Dihydrofolate reductase enzyme. 
The binding energies of the top two compounds 3A8B (-100.6 
k.cal/mol) and 3A9B (-94.6 k.cal/mol) were nearer to those of 
the standard Dihydrofolate reductase enzyme Inhibitors, such 
as Trimethoprim (-102.1 k.cal/mol ) and pyrimethamine(91.8 
k.cal/mol) and hence selected for visualization. 

In the visualization process, the top 2 ligands were compared 
with the co-crystallized ligand [Dihydro folic acid] for 
structural similarity. The ligand binding site in the whole 
protein is also visualized. In 3d interaction, the number of 
conventional hydrogen bonds was visualized. 2d interaction 
gives us a clear-cut idea of the interacting amino acid residues 
and their distance from that of the ligand at the active pocket 
site. 

Table 2 Trimethoprim has Two Hydrogen Bond 
Interactions Namely ASN:18 [2.80], ARG:57 [2.77] Table 
3 Pyrimethamine also has two hydrogen bond interactions 
namely TYR:100 [2.60], ILE:5 [2.60]. Table 4 Compound 
3A8B has four conventional hydrogen bond connections 
through the amino acid residue ARG:57 [2.61], ASN:18 
[3.10], TYR:100 [2.59], and ALA:7 [2.94].Table 5 
Compound 3A9B has two conventional hydrogen bond 
interactions with the receptor through the amino acid 
residues ASN:18 [2.80], and ARG:57 [2.77]. There are two 
conventional hydrogen bond interactions displayed by the 
standard Inhibitors. Trimethoprim and 3A8B has four amino 
acid residues in common ALA:7, LEU:28, MET:16, PHE:31. 
Trimethoprim and 3A9B has four amino acid similar ASP:27, 
PHE:31, MET:16, LEU:28. Pyrimethamine and 3A8B have 
three amino acid residues in common TYR:100, ALA:7, and 
PHE:31. Pyrimethamine and 3A9B have two amino acid 
residues common PHE:31 and ILE:94.

BINDING POCKET ANALYSIS

Table 6 the standard antagonists Trimethoprim, 
Pyrimethamine and the top ligands 3A8B,3A9B were docked 

in the centre of the binding pocket. This might have been the 
reason for their better binding energy. The top compounds 
3A8B and 3A9B contains one electron-withdrawing group 
NO2 and one electron-withdrawing group COOH, which 
might have contributed to their better binding energies. since 
the compounds 3A8B and 3A9B had near-binding energies 
as that of the standard Dihydrofolate reductase enzyme 
inhibitors Trimethoprim and pyrimethamine, they can be 
further synthesized and used for further studies.
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