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Abstract

Aims: This study focused on the production of bioethanol from Areca nut leaves, a significant cultivated feedstock. 
The research covered the entire process, from collecting the Areca nut leaves to purifying the produced bioethanol. 
Materials and Methods: The Areca nut leaves were pre-treated with sulfuric acid and sodium hydroxide, followed 
by enzymatic hydrolysis using cellulose enzymes. The hydrolyzed biomass was then fermented by Saccharomyces 
cerevisiae for 12–72 h to produce bioethanol. The produced bioethanol was purified through distillation using a rotary 
flask evaporator. To optimize the fermentation process and bioethanol production, the researchers employed two 
modeling approaches: Artificial neural networks (ANN) and response surface methodology (RSM). Variables such 
as pH, fermentation time, and disodium hydrogen phosphate (Na2HPO4) concentration, identified from the Plackett-
Burman design, were optimized using the central composite design of RSM. Results and Discussion: The R² value 
for the RSM model was 91.72%, and the adjusted R² was 84.72%. In addition, an ANN algorithm model with 3 
input neurons, 10 hidden layer neurons, and 1 output neuron was developed to investigate the relationship between 
bioethanol production and fermentation parameters. The ANN model achieved an R² of 99.78%, indicating higher 
accuracy and reliability compared to the RSM approach. The optimal conditions for bioethanol production were 
identified as pH 5.5, 60 h fermentation time, and 0.45 g of Na2HPO4. Under these conditions, the experimental 
bioethanol concentration reached 36.54 g/L. Conclusion: This study demonstrates the effective utilization of Areca 
nut leaves, a readily available agricultural waste, to produce bioethanol. The combination of statistical and machine 
learning techniques, such as ANN and RSM, allowed for the optimization of the fermentation process and the 
enhancement of bioethanol yield, showcasing the potential of this approach for sustainable biofuel production.
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INTRODUCTION

The detrimental environmental effects, 
notably global warming resulting from 
the overreliance on fossil fuels, have made 

scientists to seek alternative energy sources such 
as renewable energy, Bioethanol derived from 
various lignocellulosic biomasses including 
sugarcane bagasse, rice straw, corn straw, and 
wheat straw considered agro-industrial waste 
emerges as a promising sustainable substitute 
for fossil fuels.[1] Over the past five decades, 
numerous technologies have been developed 

to efficiently convert biomass into biofuels, aiming to make 
bioethanol a cost-competitive fuel in the contemporary fuel 
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market.[2] Lignocellulosic biomass comprises cellulose (40–
60%), hemicellulose (20–40%), and lignin forming elastic 
structure.[3] Cellulose, a polymer of glucose glycosidic bonds, 
fosters extensive hydrogen bonding, resulting in compact 
crystalline cell biological degradation. Hemicellulose, 
predominantly composed of xylene (α-1,4 linkages) branches 
of mannose, arabinose, galactose, and glucuronic acid, exhibits 
degrees of branch on biomass origin. Lignin, a large aromatic 
and hydrophobic biopolymer, cross-links with fortifying the 
cell wall and imparting mechanical strength.[4] Areca nut was 
predominantly cultivated majority in Karnataka, Kerala, and 
Assam, India’s areca nut production was approximately 83% 
of the total cultivation area. Nearly 4 lakh hectares under areca 
nut production of roughly 4.78 lakh tons from India, Karnataka 
leads in both cultivation areas and followed by Kerala and 
Assam.

Composition of lignocellulosic biomass

Lignocellulosic materials were primarily composed of three 
components: Cellulose, hemicellulose, and lignin. Together, 
cellulose and hemicellulose make up about 70% of the total 
biomass. These components are intricately bonded to lignin 
through covalent and hydrogen bonds, which enhance the 
material’s structural integrity and resistance to treatment.

The adverse environmental impacts, particularly the 
exacerbation of global warming due to dependence on fossil 
fuels, have driven scientists to explore alternative energy 
sources, such as energy. Bioethanol, extracted from diverse 
lignocellulosic biomasses, such as sugarcane bagasse, 
corn straw, and wheat straw recognized as agro-industrial 
byproducts – emerges as a pro-sustainable alternative to 
fossil fuels.[1] Over the past 50 years, technologies has been 
developed to efficiently convert biomass into biofuels, with 
the objective of bioethanol as a competitive fuel option in 
the contemporary energy market.[5,6] Lignocellulosic biomass 
mainly consists of cellulose (40–60%), hemicellulose 
(20–40%), and lignin forming a robust structure.[3] Cellulose, 
a glucose polymer links glycoside bonds and facilitates 
extensive hydrogen bonding, leading to the formation of 
composite cellulose that resists biological degradation. 
Hemicellulose, primarily comprised of xylene with diverse 
branches of mannose, arabinose, galactose, and glucuronic 
acid, exhibits various branching depending on the biomass 
source. Lignin, a substantial aromatic and hydrophobia 
interacts with hemicellulose, reinforcing the cell wall 
and providing mechanical strength). Areca nut a crucial 
commercial crop in India dominates the global problems.

MATERIALS AND METHODS

The Areca nut leaves were gathered from Sirsi, Uttara 
Kannada, India, which were dried to remove moisture content 
was finely ground into particles sized 1–2 mm.

Enzymatic hydrolysis

Ten g of oven-dried Areca nut leaves were dissolved in 
100 mL of a sodium acetate (CH3COONa) solution containing 
0.68 g of solid CH3COONa. The pH was adjusted to a range 
of 4.0–6.0 using 1.0 M NaOH and 1.0 M H2SO4. Another 5 g 
of cellulose enzyme was added to the solution, and the flask 
was sealed with cotton foil. The mixture was incubated in a 
shaker at 37°C and 150 rpm for a specified duration. Samples 
were periodically withdrawn for glucose testing at regular 
intervals of 12–24 h.

PB design and central composite design (CCD)

Response surface methodology (RSM) involves a set of 
experimental techniques was used to assess the relationship 
between experimental factors and determine their responses. 
The significant variables influencing bioethanol production 
were screened using the Plackett-Burman design (PBD). This 
design was experimented using Minitab software employed 
for (95% confidence level). The acceptance criterion for the 
predicted model was based on an adjusted coefficient of 
regression (R²adj) which was exceeding 0.95. Variables with 
P = 0.05 for PBD and 0.01 for the CCD were considered to have 
a significant effect on the response. The independent variables 
selected for this study included physical parameters, such as 
pH and fermentation time, as well as media components such 
as yeast extract, ammonium chloride, disodium hydrogen 
phosphate (Na2HPO4), and potassium dihydrogen phosphate. 
In addition, a central composite rotatable design with three 
independent variables at five levels each was conducted. This 
experimental setup was aimed to establish a second-degree 

Table 1: The effect of enzymatic hydrolysis period 
on glucose content

Sample Enzymatic 
hydrolysis period (h)

Glucose 
content (g/L)

Areca nut leaves 24 31.55

48 47.45

72 56.76

Figure 1: Lignocellulosic biomass composition (cellulose, 
hemicellulose and lignin)
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polynomial model equation that describes bioethanol 
production as a function of three independent variables: pH, 
fermentation time, and Na2HPO4, for the fermentation process. 
All experiments were conducted randomly, and the resulting 
data were analyzed using Minitab software.

Artificial neural network (ANN)

ANNs were widely used for optimizing process parameters in 
fermentation processes intended at bioethanol production.[7-9] 
In this study, ANN represents an intelligence technique, 
commonly employed for modeling complex phenomena 
involving numerous process parameters.[10,11] The predictive 
capability of ANN relies on experimental data and subsequent 
validation with independent data.[12] ANN tool was used to 
address non-linear models by assessing relationships between 
input and output parameters, even when the data are intricate 
and incomplete patterns.[13-15]

RESULTS AND DISCUSSION

The pre-treatment of Areca nut leaves was carried by 
enzymatic hydrolysis and further used for the fermentation 
process. Enzymatic hydrolysis was carried out for 24 h, 48 h, 
and 72h. It was observed that the Areca nut leaves residues 
exhibited higher glucose yield, indicating an extensive 
reaction between the cellulose enzyme and the Areca nut 
leaves (Figures 1 and 2). The analysis of glucose content 
for different Areca nut samples was found to be 31.55 g/L, 
47.45 g/L, and 56.76 g/L at 24 h, 48 h, and 72 h, respectively.

The results showed a continuous increase in glucose content 
with the extension of the hydrolysis period. The glucose 
content was doubled within a 48-h hydrolysis.

RSM modeling

The process of optimization of the media components for the highest 
bioethanol production was carried out by selecting significant process 
parameters, such as pH, fermentation time, and Na2HPO4.

[16-18] The 
model given by the equation indicates bioethanol production as a 
function of pH, Na2HPO4, and fermentation time.

The statistical significance of the quadratic regression model 
was verified using analysis of variance and Fisher’s test (F). 
A high F-value and a low P-value indicate that the model 
was statistically significant. The model’s coefficient of 
determination (R²) was found to be 91.72% (0.9172), which 
was close to 1. The R² value (91.72%) implies that 91.72% 
of the variation in bioethanol production was due to the 
independent parameters. Overall, the model accounts for a 
significant portion of the variability in the response variable, 
with pH, Na2HPO4, and fermentation time playing significant 
roles individually and through their interactions.Figure 2: Wet and dry arecanut leaves

Figure 3: (a) Main effect plots (b) Interaction plots

a b
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Figure 4: The 3D surface plots and 2D contour plot showing the relative effect of pH and Na 2 HPO 4 on bioethanol production.

Figure 6: The 3D surface plots and 2D contour plot showing the relative effect of pH and Fer time on bioethanol production.

Figure 5: The 3D surface plots and 2D contour plot showing the relative effect of time and Na 2 HPO 4 on bioethanol production.
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Table 3: Model summary table of RSM (CCD)
S R‑sq (%) R‑sq 

(adj) (%)
PRESS R‑sq 

(pred) (%)
1.18934 91.72 84.27 104.452 78.62
RSM: Response surface methodology, CCD: Central composite 
design, F: Fisher’s function, DF: Degree of freedom, Adj. SS: 
Adjusted sum of squares, Adj MS: Adjusted mean squares. 
R2=91.72%; Adjusted R2=84.27%; Predicted R2=78.62%. Any 
probability P<0.05 corresponds to significance

Table 2: Central composite design matrix for the production of bioethanol
Order pH Na2HPO4 F fermentation time Expt results (g/L) RSM predicted (g/L)
13 5.0 0.3 24 28.670 29.7392

8 5.5 0.4 60 36.540 35.4356

18 5.0 0.3 48 27.881 28.6540

17 5.0 0.3 48 27.881 28.6540

2 5.5 0.15 36 34.980 33.5534

11 5.0 0.047 48 27.880 27.6479

20 5.0 0.3 48 29.450 28.6540

19 5.0 0.3 48 28.670 28.6540

4 5.5 0.45 36 28.670 28.8249

3 4.5 0.45 36 24.720 23.1499

1 4.5 0.15 36 28.670 29.4535

12 5.0 0.55 48 26.300 26.9861

6 5.5 0.15 60 28.670 29.9191

7 4.5 0.45 60 30.240 31.3456

5 4.5 0.15 60 27.880 27.4041

10 5.8 0.30 48 33.400 33.9154

9 4.1 0.30 48 27.090 27.0285

15 5.0 0.30 48 28.670 28.6540

14 5.0 0.30 72 34.190 33.5748

16 5.0 0.30 48 29.450 28.6540

From the main effect plots (Figure 3), it was found that 
with an increase in pH the production of bioethanol was 
also increased and for Na2HPO4 until the middle value there 
was an increase in the bioethanol, production, the effect 
of fermentation time was a significant parameter as it was 
evidenced from different plots.

Figure 4; represents the relative effects of Na2HPO4 (0.05–0.55) 
and pH (4.1–5.8) on bioethanol production, while holding 
fermentation time constant at 48 h. The bioethanol production 
was high at a very high pH and mid value of Na2HPO4. The plots 
reveled that as an increase in pH and keeping Na2HPO4 value at 
mid-level, the bioethanol production was also increases.

Figure 5 above represents the relative effects of 
Na2HPO4 (0.05–0.55) and fermentation time (24–72h) 
on bioethanol production while holding a pH as 4. The 
bioethanol production was high at more fermentation time 
and mid value of Na2HPO4.

Figure 6; illustrates the relative effects of fermentation 
time (24–72 h) and pH (4.1–5.8) on bioethanol production, 

AQ4AQ4

Figure 7: Artificial neural networks: Model (3–10–1)

Figure 8: The type of algorithms used in prediction in artificial 
neural networks
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Table 4: ANN model for production of bioethanol
Order pH Na2HPO4 Fetim fermentation time Expt. result (g/L) ANN model predicted (g/L)
Training data

13 5.0 0.3 24 28.670 28.66

8 5.5 0.4 60 36.540 36.43

18 5.0 0.3 48 27.881 28.66

17 5.0 0.3 48 27.881 28.66

2 5.5 0.15 36 34.980 34.98

11 5.0 0.047 48 27.880 27.88

20 5.0 0.3 48 29.450 28.66

19 5.0 0.3 48 28.670 28.66

4 5.5 0.45 36 28.670 28.70

3 4.5 0.45 36 24.720 24.73

1 4.5 0.15 36 28.670 28.67

12 5.0 0.55 48 26.300 26.29

6 5.5 0.15 60 28.670 28.67

7 4.5 0.45 60 30.240 30.24

5 4.5 0.15 60 27.880 27.86

Validation

10 5.8 0.30 48 33.400 33.40

9 4.1 0.30 48 27.090 27.09

15 5.0 0.30 48 28.670 28.66

Testing

14 5.0 0.30 72 34.190 34.19

16 5.0 0.30 48 29.450 28.66

Figure 9: Regression plot observed versus predicted results for (a) training, (b) validation, (c) testing and (d) total, followed by 
their respective R2 values

a

c d

b
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Table 5: Comparison of optimal condition prediction for RSM and ANN
Tool pH Na2HPO4 Fermentation time Actual bioethanol yield (g/L) Predicted bioethanol yield (g/L)
RSM (CCD) 5.5 0.4 60 36.54 35.43

ANN 5.5 0.4 60 36.54 36.45
RSM: Response surface methodology, ANN: Artificial neural networks, CCD: Central composite design

while keeping Na2HPO4 constant at 0.3. Bioethanol 
production was higher at increased values of fermentation 
time and pH. As both pH and fermentation time increases, 
bioethanol production also increased. To validate the model’s 
adequacy, experiments were conducted in triplicate within 
the experimental range to verify the predicted optima. The 
experimental results concurred with the predicted values, 
confirming the model’s adequacy. Optimal values for different 
parameters were obtained using the Minitab optimizer. The 
predicted bioethanol production at these optimal values 
was 35.43 g/L, and the experimental value was 36.54 g/L, 
aligning closely with the prediction.

ANN modeling and optimization

ANN modeling was implemented using the MATLAB® 
Neural Network Toolbox based on Haykin’s methodology.[19] 
The input layer included normalized experimental variables: 
Fermentation time, pH, and Na2HPO4. The hidden layer 
consisted of 10 neurons, a number determined by testing 
up to 50 neurons and selecting the number that allowed 
the ANN to best learn and generalize the experiment (i.e., 
the smallest mean squared error [MSE] and highest R² 
values). The output layer had one neuron for estimating 
lipase production based on the input variables. Sigmoidal 
functions were used as activation functions in the hidden 
layer, and a linear function was used in the output layer. 
Additional parameters were kept at MATLAB’s default 
settings. The training, validation, and test samples used in 
this study are detailed in a separate table. Out of a total of 
20 samples, 15 were used for training (samples 13–16 were 
averaged values of the central point), 3 for validation, and 
2 for testing. Although 20 samples are generally considered 
a small dataset for ANN training, the high quality of the 
predicted values (R² values >0.999) justified their adequacy 
due to the representativeness and precision of the data. 
All samples were averaged triplicates to minimize outlier 
influence. Data were generated using the CCD with two 
additional upper and lower levels, extending beyond the 
original experimental design’s domain (Tables 2-4).

Optimal number of hidden neurons

Increasing the number of hidden neurons usually improves 
learning performance up to a certain point. Too few neurons 
can restrict the neural network’s ability to model the process 
effectively, while too many can lead to overfitting, where the 
network learns noise present in the training data.[20]

The impact of varying the number of hidden neurons on model fit 
was evaluated, revealing that 10 hidden neurons provided the best 
balance. Using more neurons resulted in noticeable overfitting. 
Therefore, a 3–10–1 topology was selected as the optimal 
configuration for estimating bioethanol production (Figure 7).

Figure 8 has information of the type of data division, which 
is random and the training equation is Levenberg-Marquardt 
and here the performance type is MSE.[21] The Levenberg-
Marquardt training algorithm was a precise optimization method 
commonly used in neural network training. In MATLAB, the 
“nntool” function referred to a graphical user interface for 
training neural networks with various algorithms, including 
Levenberg-Marquardt. This algorithm was particularly popular 
for solving non-linear regression problems as it combined the 
advantages of the Gauss-Newton method and the gradient 
descent method (Figure 9). It efficiently handled highly non-
linear mappings and often converged faster than traditional 
gradient-based optimization algorithms.[22]

Comparison of RSM and ANN predicted values

Comparing the predicted and actual bioethanol output values 
from RSM and ANN, both models demonstrated strong 
performance based on R² and AAD values, providing consistent 
responses. However, the ANN approach outperformed RSM 
in terms of both data fitting and estimation capabilities.[16,23,24]

CONCLUSION

This research study confirms that agricultural waste Areca 
nut leaves were used to produce bioethanol by the separate 
hydrolysis and fermentation methods. During pre-treatment 
with acid at high-temperature plant cell walls will be disrupted 
and in the enzyme hydrolysis process using cellulose enzyme 
we convert cellulose into glucose units and in the yeast 
fermentation process we convert sugar into bioethanol, we 
purify the bioethanol using rotary evaporator based on the 
boiling point of bioethanol. Here, the fermentation process 
is optimized by ANN and RSM. ANNs as compared to RSM 
were successfully applied to the optimization and prediction 
of bioethanol production. The high regression coefficients 
R2 and the low root mean square error of the ANN model 
revealed that it was well fitted to the experimental design. 
Hence, the results of the significance levels were found 
to be pH, fermentation time and Na2HPO4 were the most 
significant factors affecting the bioethanol concentrations 
from the fermentation process. The optimal conditions were 
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pH 5.5, 60 h of fermentation, and 0.45 g of Na2HPO4, under 
these optimal conditions we get 36.54 g/L bioethanol yield.
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