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Abstract

Ultrasound (US) waves due to their unique features can be a treatment option for osteoporosis. Initial studies 
have shown promising but controversial outcomes. Several preclinical and clinical studies have been conducted 
on osteoporosis and studies are ongoing to find optimum US parameters, mechanisms of action, and therapeutic 
efficacies of these techniques for osteoporosis treatment. This paper was aimed to review the recent advances 
of using US waves in the treatment of osteoporosis and possible mechanisms of actions. The databases of 
PubMed (1980-2016), EMBASE (1980-2016), Web of Sciences (1980-2016), and Google Scholar (1980-2016) 
were searched using the set terms. The obtained records were reviewed, and relevant studies were selected for 
comprehensive review of the current literature. Low-intensity pulsed US (LIPUS) has biological effects on the 
bone healing process and it can accelerate bone regeneration. Current evidence is limited on the efficacy of US 
waves for treatment or prevention of osteoporosis; however, the initial studies are promising. The US waves can 
promote osteoblast and inhibit osteoclast, enhance angiogenesis, trigger expression of different genes associated 
with osteogenesis. No definite dose-response existed on the clinical trials of US wave applications. The current 
evidence shows the therapeutic efficacy of US waves particularly LIPUS for osteoporosis treatment; however, 
to observe therapeutic outcomes long-term US stimulation is required. No definitive dose-response is proposed 
for osteoporosis. Further in vitro and clinical trials should be conducted to develop US-based techniques for the 
treatment of osteoporosis as a clinical treatment option.
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INTRODUCTION

Osteoporosis is among the common 
musculoskeletal disorders worldwide. 
The first choice of treatment for 

osteoporosis is currently medication. 
Bisphosphonates are the most common 
medications administered for osteoporosis 
treatment and prevention. The main types 
of these medications include alendronate 
(Fosamax), risedronate (Actonel), 
ibandronate (Boniva), and zoledronic acid 
(Reclast).[1] Hormones, such as estrogen, 
and some hormone-like medications such 
as raloxifene (Evista) are also approved 
medications for preventing and treating 
osteoporosis. The medications have 
different side effects considering the 
relatively long-term administration of such 
medications.[2] Moreover, fewer women use 
estrogen replacement therapy now because 
it may increase the risk of heart attacks and 
some types of cancer. Therefore, developing 

a new non-medication treatment for osteoporosis is 
necessary.

During the recent years, several non-medication treatments 
have been developed for the treatment of bone related 
disorders.[3,4] At present, ultrasound (US) waves are known as 
therapeutic tools which are widely used in various fields of 
diagnostic and therapeutic medicine including structural and 
functional imaging, soft tissue injuries repairing, recovery 
of musculoskeletal anomalies and injuries, and reducing 
the pain.[5-7] US is a mechanical longitudinal energy in the 
form of waves that can transfers mechanical energy into the 
tissues as a propagating pressure wave.[8,9] Bone regeneration 
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involves a complex process such as inflammation, cellular 
proliferation and differentiation, chemotaxis, synthesis 
of an extracellular matrix and finally remodeling.[10,11] 
Although the cellular mechanisms of the US effects are 
not clearly understood, several in vitro and in vivo studies 
have demonstrated that low-intensity pulsed US (LIPUS) 
has biological effects on the bone-healing process and it 
can accelerate bone regeneration.[12-15] The results of several 
histological studies have shown that LIPUS has an important 
influence on key functional activities of all major cell types 
involved in bone healing, such as osteoblasts, osteoclasts, 
chondrocytes, and mesenchymal stem cells.[16,17] In addition, 
several studies showed a positive effect of US to increase 
the levels of intracellular calcium incorporation in cultures 
of differentiating bone and cartilage cells. Increases in 
calcium incorporation were modulated transforming growth 
factor (TGF)-beta and adenylate cyclase activity. LIPUS 
also has been shown to increase the intracellular calcium 
concentration in chondrocytes and increase the percentage 
of calcified cartilage. Others have suggested that LIPUS 
have a stimulatory effect on endochondral ossification. 
Concurrently, stimulation of endochondral ossification is 
due to stimulation of bone cell differentiation and calcified 
matrix production.[18-21] In addition, it has been shown in an 
animal model that LIPUS leads to stimulation of vascular 
endothelial growth factor. Others have shown that LIPUS 
treatment increases the degree of vascularity, indication 
that US increases blood flow.[22,23] This study reviewed the 
mechanism of US stimulation in osteoporosis treatment.

LIPUS AND OSTEOPOROSIS

Osteoporosis is the most common bone disorder and a major 
and growing health problem worldwide. Several risk factors 
are involved in the occurrence and progression of osteoporosis 
including aging, sedentary lifestyle and estrogen deficiency 
due to menopause, ovariectomy, and hormonal therapy.[24-27]

Various medications such as estrogen, bisphosphonates, 
calcitonin, calcium, and vitamin D have been used in the 
treatment of osteoporosis for many years. Although they are 
mainly used therapeutically as bone resorption inhibitors, 
they have no significant long-term effects.

Numerous in vivo animal and clinical trials studies have 
shown that LIPUS because of its properties and positive 
effects on the generation and activation of bone cells is 
capable of accelerating and augmenting the healing of 
osteoporosis. LIPUS produces the pressure waves, which in 
duce biochemical and molecular events at the cellular level 
and whereby accelerated healing of osteoporosis.[22,28-32] 
The results of biomechanical and histologic investigations 
prove that LIPUS have effects on bone mineral density 
and mechanical strength. They also concluded that LIPUS 
stimulates bone formation in distraction osteogenesis and 
acceleration of healing or strength.[33,34] Various studies have 

shown that LIPUS not only prevent bone loss but also restore 
bone mass. The finding suggested that LIPUS therapy, if 
scaled for whole body use, has clear clinical benefits for the 
treatment of osteoporosis.[22,35-37]

LIPUS IN CELLULAR LEVELS

Most of the experimental studies showed that LIPUS 
treatment influence cell membrane permeability and increase 
cellular activity.[31,38-40]

Several genes such as alkaline phosphatase (ALP), bone 
sialoprotein (BSP), collagen type I, osteocalcin (OC), 
and osteonectin (ON) are characteristic of osteoblast 
differentiation. They are overexpressed during the process 
of osteogenesis.[41] The results of a study that evaluated the 
genetic expression and response to LIPUS in rat osteoblastic 
cells showed early response genes in bone marrow-derived 
stromal cells. In this study, the gene expression level in 
LIPUS group is demonstrated and calculated over the control 
group. The results between LIPUS stimulated group and sham 
control group for cyclooxygenase-2, early growth response-1, 
TGF-beta stimulated clone-22, ON, and osteopontin had 
shown a statistically significant difference.[42] Another 
study evaluated the effect of LIPUS on the differentiation 
of pluripotent mesenchymal cell line C2C12 by examining 
particular mRNA and protein expression levels. C2C12 cells 
have the capacity to differentiate into myoblasts, osteoblasts, 
chondroblasts, or adipocytes. The results determined that 
LIPUS stimulation increased Runx2 protein expression 
and phosphorylation of ERK1/2 and p38 mitogen-activated 
protein kinase (MAPK). They also demonstrated that 
LIPUS stimulation converts the differentiation pathway of 
C2C12 cells into the osteoblast and/or chondroblast lineage 
via activated phosphorylation of ERK1/2 and p38 MAPK.[43] 
Mukai et al. (2005) in their in vitro study demonstrated that 
LIPUS promoted the mRNA expression of type II collagen, 
type X collagen, aggrecan, and TGF-β in rat chondrocytes.[44] 
In addition, Chen et al. (2003) reported that LIPUS stimulation 
elevated Runx2 mRNA expression and gradually promoted 
OC mRNA expression in human osteoblasts.[40] Other several 
in vitro studies had shown LIPUS elevated mRNA levels for 
insulin-like growth factor-I, OC, and BSP and also it was 
found to stimulate mRNA expression of the bone matrix 
proteins ALP and OC in UMR-106 cells.[16,17] In addition, 
there have been some reports that LIPUS may have a direct 
effect on cell membrane permeability.[23,45-50]

TEMPERATURE VARIATIONS

The range of energies used in LIPUS treatment is relatively 
low which is the range of non-thermogenic and nondestructive. 
High-intensity US waves that are used in therapeutic and 
surgical applications (1-300 W/cm2) generates considerable 
heat in living tissue.
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Some of the investigators reported that the therapeutic benefits 
observed with LIPUS stimulation involve non-thermal 
mechanisms. Contrary, some researchers believe that the 
ability of LIPUS to stimulate changes in tissues and cells may 
be related to the temperature rising effects induced by energy 
absorption.[51-54] High intensities (1000-3000 mW/cm2) have 
temperature effects and can cause considerable heating 
of tissues. Whereas the heating effect from LIPUS (20 to 
50 mW/cm2) is estimated <11°C,[54] some enzymes such as 
matrix metalloproteinase or interstitial collagenase have 
been shown to be very sensitive to small variations in 
temperature. Therefore, minimal heating effects may affect 
on them.[55,56] Chang et al. (2002) investigated thermal effects 
of US stimulation on fracture healing. They reported that 
difference between the microwave hyperthermia treated 
limbs and the sham-treated limb was not quite statistically 
significant. They have suggested that LIPUS stimulation 
could increase the new bone formation but its effects probably 
are not mediated via hyperthermia.[54]

Other investigators suggested that the therapeutic benefits 
observed in tissues and cells after LIPUS stimulation may 
also be associated with nonthermal processes such as 
acoustic streaming and cavitation. They have suggested that 
cavitation mechanisms may due to an increase in protein and 
collagen synthesis observed in human fibroblasts after US 
stimulation.[57-62]

EFFECTS OF VARIOUS INTENSITIES

To finding an optimal LIPUS protocol studies have examined 
several different low intensities and frequencies. Several 
studies have investigated the role of intensity in therapeutic 
effects and an attempt to determine the optimal LIPUS 
setting. High energy and intensity US through absorbed by 
tissues lead to increase tissues temperature and kill malignant 
cells.[7]

To reduce pain and muscle spasms, to decrease joint stiffness, 
and to improve muscle mobility use applications of US in 
intensities of 1-3 W/cm2.[63]

The results of a study showed that the response of cells to the 
US is highly dependent on the intensity. With increasing US 
intensity to 120, 390, and 1490 mW/cm2 expression of ALP 
showed progressively increased.[64]

In a study, two different LIPUS intensities compared directly 
to investigate the relationship between intensity of and 
restoring the mechanical properties of a rat femora following 
fracture (50 and 100 mW/cm2). The results showed that the 
group was treated with 50 mW/cm2 LIPUS intensity had 
significantly greater maximum torque and torsion stiffness 
compared to 100 mW/cm2 treated femora and untreated 
controls.[13]

Another parameter of the US signal that has also been 
investigated in stimulating bone osteogenesis is the frequency.

Several studies showed that the response of cells to the US 
is also dependent on the frequency. In a study therapeutic 
results of two protocols with different frequencies (1.5 MHz, 
3.0 MHz) and constant intensity (500 mW/cm2) on rat 
fibulae fractures healing were compared. Results showed 
that protocol with 1.5 MHz frequency had more advanced 
radiographic and histological healing.[46] Results of another 
study demonstrated that there was no significant difference in 
therapeutic results of two protocols with different frequencies 
(1.5 MHz, 0.5 MHz) and constant intensity (30 mW/cm2). 
In this study maximum torque and torsional stiffness was 
investigated and both frequencies almost equally led to 
increase these parameters compared to untreated controls.[65] 
Another two protocols with different frequencies (1.5 MHz, 
3.0 MHz) and constant intensity (500 mW/cm2) were 
investigated by Tsai et al. (1992). Results of the group that 
had been treated with 1.5 MHz showed significantly greater 
mineral apposition rates.[66]

Based on the results obtained to stimulate osteogenesis 
experimentally and clinically frequency of 1.5 MHz has been 
more commonly used.

TIME-DEPENDENT EFFECT

There have been some reports that LIPUS shows positive 
effects on the healing of fresh fracture, nonunion and delayed 
union and also it accelerates bone maturation in distraction 
osteogenesis in clinical treatment and animals models.[67-72]

On the other hand, there are some controversial results in regard 
to LIPUS is most effective during the lengthening phase, but 
the optimal timing of LIPUS has not been established. The 
researchers sought to determine the stage of fracture repair 
process that US have the greatest influence effects.

Several in vivo experimental studies investigated the effect of 
LIPUS stimulation on the various phase of fracture healing. 
Results of some studies suggested that LIPUS does not 
affect the remodeling phase of fracture healing. These results 
determined that LIPUS have a significant effect on the earlier 
inflammatory or accelerate to callus formation phases of 
healing.[22,31,73-75]

In a study with a rat femoral fracture model, hard callus 
area, bone mineral content, mechanical torsion properties 
were measured at 4 different periods (1-8 days, 9-16 days, 
17-24 days, 1-24 days) after expose to LIPUS, along with 
histologic analysis. The findings reported statistically 
significant increases in all measured parameters in all groups 
when compared with the control group. They suggested that 
LIPUS acts on some cellular reactions at each stage of the 
fracture healing process.[73]
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Azuma et al. (2001) in an experimental study measured 
mechanical and histological changes at different time periods 
during the healing process. They investigated the timing or 
duration of stimulation effect after 8 and 25 days of LIPUS 
treatment. They reported that the results had not shown 
significant effect associated with the timing or duration on 
the bone mineral content, but they also reported a significant 
increase in bone stiffness and maximum torque in LIPUS 
group.[73]

CONCLUSION

Most of the studies showed a positive effect of US on bone 
healing. Numerous studies have proved the effect of LIPUS 
on bone regeneration, changes in bone mineral content 
and density. They have also demonstrated LIPUS increase 
callus formation, and its biological changes. Based on the 
results, investigators suggested that LIPUS therapy with 
smaller and continuous mechanical stress is more useful 
in preventing bone loss and bone remodeling in a clinical 
setting.[13,38,40,54,64-66] LIPUS is affected without pain, without 
the need for hospitalization and it is portable by the patients. 
Between the methods available to enhance musculoskeletal 
disorders healing, US has suggested as a safe, practical, 
and effective treatment.[22,28,34,35] In our opinion, extensive 
clinical and experimental and long-term studies investigating 
biophysical mechanisms of LIPUS are required.
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