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Abstract

Technology advancements in synthesis and modification of nanoscale materials have advanced the development 
of different medical applications. Nanoparticles (NPs) have demonstrated promising potentials in diagnostic 
medicine especially for magnetic resonance imaging (MRI). Iron oxide, gold, and gadolinium NPs have been used 
in preclinical and clinical studies as contrast enhancing agents. Studies are ongoing to find the optimum parameters 
of these NPs as contrast agents (CAs) of MRI. This study aims to review the recent applications of iron oxide, 
gold, and gadolinium NPs as contrast enhancing agents in MRI for diagnosis of different disorders.  The databases 
of PubMed (1980-2016), Web of Science (1980-2016), Scopus (1980-2016), and Google Scholar (1980-2016) 
were explored using the search terms “Nanoparticles,” “Contrast agents,” “Magnetic Resonance Imaging” and 
“disease.” The obtained results were screened for the title and abstract and comprehensively reviewed. MRI 
CAs are divided into T1 and T2 CAs, respectively, used for T1 and T2 weighted protocols in MRI. Iron oxide, 
gadolinium, and gold NPs are the most common CAs used in MRI. High magnetization values, small size, narrow 
particle size distribution are the main features of NPs as CAs in MRI. Gadolinium is the most common T1 CAs 
used in MRI. However, it is associated with toxicity which is a serious concern in patients with renal failure. Iron 
oxide NPs can be used for these patients. However, the main limitation of iron oxide NPs is limited relaxivity. The 
relaxivity strongly depends on the size of NP. Paramagnetic NPs serve as T1 CAs and super paramagnetic NPs 
as T2 CAs. Modulating the size of NPs is the main parameter to adjust different NPs for different MRI protocols. 
Recent years to overcome the problem of gadolinium and iron oxide NPs, different paramagnetic and super 
paramagnetic NPs are developed.
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INTRODUCTION

Noninvasive assessment and imaging 
of internal organs of a human body 
has been always a main challenge 

to physicians and researchers.[1] Magnetic 
resonance imaging (MRI) is the most common 
diagnostic imaging modality in clinical 
medicine due to its excellent spatial resolution, 
noninvasive and nondestructive nature.[2] MRI is 
imaging of soft tissue and in some cases cannot 
generate a sufficient contrast. The development 
of MRI to one of the most powerful techniques 
in clinical diagnosis is accompanied by the 
progress in the design of contrast agents (CAs), 
which enhance image quality.[3] MR images 
frequently rely on the differences in tissue 
relaxation times, both longitudinal (T1) and 
transverse (T2), to generate image contrast.[4] 

After protons are excited with a radiofrequency 

(RF) pulse applied perpendicular to the magnetic field, the 
protons will realign themselves with the magnetic field, a 
process referred to as relaxation. MRI signals are modulated 
by the rates at which protons return to equilibrium after 
an RF pulse. The difference in T1 and T2 relaxation times 
allow differentiation between soft tissues, bone, air, and 
liquids in the body.[5] Disease detection with MRI is often 
difficult because areas involved in the disease have similar 
signal intensity compared to the surrounding healthy tissue; 
therefore, requiring signal enhancement using CAs.[6] CAs 
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interact with water molecules, leading to altered proton 
T1 or T2 relaxation times.[7] Contrast in MRI is most often 
defined by “T1” (spin–spin) or “T2” (spin–lattice) relaxation 
times, depending on the exact pulse sequence used to excite 
and then measure the relaxing spins. Exogenous CAs may 
be employed to alter local T1 or T2 relaxation times to 
produce highly enhanced tissue contrast as compared with 
the expected background T1 or T2 signals.[8]

Nanotechnology has revolutionized the potentials of the MRI 
imaging modality. Nanoparticles (NPs) continue to receive 
attention in the field of medical imaging for their potential 
as specific CAs in vitro and in vivo.[9-11] The combination of 
multimodal imaging and theranostics will lead to cutting-
edge technologies in which the potential of the NPs can be 
maximized.[12] However, the sensitivity at cellular/molecular 
imaging level is obviously lower than positron emission 
tomography and fluorescence imaging. MRI CAs, such as 
superparamagnetic iron oxide NPs (SPIONs), are emerging 
as one of the most promising probes for improving contrast at 
cellular or even molecular levels.[13-19] The use of CAs in MRI 
facilitates a more accurate diagnosis by enhancing the contrast 
between tissues. Recently, CAs have also been combined 
with target-directing molecules to visualize specific tissues 
and molecules.[20,21] In this regard, SPIONs, which induce the 
dark contrast enhancement in T2-weighted MR images, have 
been commercialized as T2 CAs.[16,22-27]

In this paper, we will review the characteristics of different 
types of NPs including iron oxide, gold, and gadolinium 
which have been developed as contrast enhancing agents 
in MRI. Characteristics such as size, clinical applications, 
protein/ligand, relaxivity, and toxicity for each type of NPs 
are discussed.

METHOD

The databases of PubMed, Web of Science, and Google 
Scholar were searched from the first data available to 2016. 
The following key words were used “MRI” and “CA” and 
“NP.” The obtained records were reviewed for the title and 
abstract by two authors independently. Then, a consensus 
decision was made whether the studies are relevant for the 
review topic. Human and animal studies including the use 
of NPs the NPs used in MRI. Limited number of studies in 
this field and heterogeneity in the design and methodology 
of the studies, we aimed to provide a comprehensive and 
descriptive overview of all aspect of applications of NPs for 
more accurate diagnostic MRI.

Search method

The scientific records were retrieved by a systematic search 
of multiple bibliographic databases and the last update of the 
search was performed on to December 10th 2016 including 

PubMed (1980-2016), Web of Science (1980-2016), Scopus 
(1980-2016), and Google Scholar (1980-2016). The language 
of the search was limited to English. The search key words 
based on the MeSH heading included “MRI” and “CA” and 
“NPs.” The titles and abstracts of all the records retrieved by 
the search strategy were reviewed by two authors (AY and 
HM) and the relevant papers with full texts available were 
used for further assessments. Moreover, the reference lists 
of the relevant papers were checked manually to identify 
additional eligible studies. These papers also were included 
for the full review.

Inclusion and exclusion criteria

The identification and screening of the titles for inclusion 
or exclusion were performed independently by the two 
reviewers (AY and HM) and disagreements were resolved by 
discussion. Only original articles were eligible if they provided 
the following characteristics: (1) Human and animal studies 
that used of NPs in MRI, (2) in vivo and in vitro studies, (3) 
articles that evaluated diagnosis variety of cancers and tumors 
using NPs. Studies were excluded if: (a) abstract only, (b) 
review or meta-analysis, (c) books, (d) letters, (e) conference 
documents, (f) case reports, (g) editorial, (h) guideline, and 
(i) pilot study. The flowchart of the study process is depicted 
in Figure 1.

RESULTS

Characteristics of studies

A total of 508 records were retrieved in the searching process. 
Studies were excluded if abstract only, review or meta-
analysis, books, letters, conference documents, case reports, 
editorial, guideline, and pilot study. Finally, 17 articles 
fulfilled the criteria to be included in the final reviewing.

Table 1 presents descriptive information of all studies. The 
trials were conducted until 2016 in China, Australia, Korea, 
Taiwan, U.S.A, Japan, etc.

NPs should be biocompatible, nontoxic, and stable for 
in vivo applications. These features can be controlled by 
changing the size and the coating’s properties of NPs.[13,28] 

MRI CAs are divided into T1 and T2 CAs, respectively, 
used for T1 and T2 weighted protocols in MRI. Iron oxide, 
gadolinium, and gold NPs (AuNPs) are the most common 
CAs used in MRI. High magnetization values, small size, 
narrow particle size distribution are the main features of 
NPs as CAs in MRI. Gadolinium is the most common T1 
CAs used in MRI. However, it is associated with toxicity 
which is a serious concern in patients with renal failure. 
Iron oxide NPs can be used for these patients. However, the 
main limitation of iron oxide NPs is limited relaxivity. The 
relaxivity strongly depends on the size of NP. Paramagnetic 
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NPs serve as T1 CAs and super paramagnetic NPs as T2 
CAs.

SPIONs

Iron oxide NPs are iron oxide particles with diameters between 
1 and 100 nm. The two main forms are magnetite (Fe3O4) 
and its oxidized form maghemite (γ-Fe2O3). Magnetite has an 
inverse spinal structure with oxygen forming a face-centered 
cubic crystal system. In magnetite, all tetrahedral sites are 
occupied by Fe3+ and octahedral sites are occupied by both 
Fe3+ and Fe2+. Maghemite differs from magnetite in that all 
or most of the iron atoms are in the trivalent state (Fe3+) and 
by the presence of cation vacancies in the octahedral sites. 
Maghemite has a cubic unit cell in which each cell contains 
32 O ions, 211⁄3Fe3+ ions, and 22⁄3 vacancies.[13,22,29-33]

Gadolinium NPs

Gadolinium (Gd3+) ion is the most commonly used metal 
ion as CA in MRI. The main characteristic of Gd3+ ion is 
the presence of seven unpaired electrons combined with a 

long electron spin relaxation time that makes this metal a 
very efficient relaxation enhancing agent.[34,35] The five MRI 
CAs approved by the FDA are based on the Gd3+ ion, the 
material has high ability to catalyze the relaxation of the 
water signal and create positive contrast in MRI.[3] Several 
methods are known for the synthesis of gadolinium oxide 
NPs, mostly based on precipitation of the hydroxide by 
the reaction of gadolinium ions with hydroxide, followed 
by thermal dehydration to the oxide. The NPs are always 
coated with a protective material to avoid the formation 
of larger polycrystalline aggregates.[3,4,7,33,36-38] Gadolinium 
oxide NPs are potential CAs for MRI. Sizes of these NPs are 
<65 nm. Gadolinium oxide NPs have a relaxivity of <20/s/
mM. The main clinical challenge of using gadolinium NPs 
is high toxicity of these agents. Gadolinium is very toxic 
in ionic form (Gd3+ ion) which extremely interferes with 
calcium channels and protein binding sites so that cannot be 
administered directly.[19,39-44] Free Gd ions accumulate in the 
liver, spleen, kidney, and bones. To reduce the side effects 
of toxic ions and prevent tissue interaction, Gd3+ ions are 
combined with chelating ligands. However, toxic Gd3+ ions 
may still be released from some chelates via transmetallation 
with other metal ions such as Zn2+, Ca2+, and Cu2+ inside the 

Figure 1: The flowchart of the study design process
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body and protonation of the ligands in the low pH mediums 
which may cause the separation of scheelite within the 
body.[45,46]

AuNPs

AuNPs, for instance, have demonstrated a great potential 
as an excellent substitute for iodine. Advantage of AuNPs 
comes from the fact that facile surface modification may 
lead to the formation of various functionalities applicable to 
multiple imaging modalities such as MRI. The common size 
distribution of these NPs is <13 nm.[36,38,47,48]

CONCLUSION

New nanotechnologies have great promise for achieving 
high MR contrast. They have the potential of reducing the 
risk of toxicity or intolerance due to the release of free metal. 
Various NPs are already used. Each type has its advantages 
and disadvantages in terms of chemistry, availability, 
production costs, and biocompatibility properties. Important 
factors to consider when choosing a specific NP are the 
biocompatibility, size, shape, and the payload or relaxivity 
per volume. Modulating the size of NPs is the main parameter 
to adjust different NPs for different MRI protocols. Recent 
years to overcome the problem of gadolinium and iron oxide 
NPs, different paramagnetic and super paramagnetic NPs are 
developed.
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