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Applications of Nanoparticles in Magnetic
Resonance Imaging: A Comprehensive
Review

Ali Yadollahpour', Halime Mansoury Asl?*, Samaneh Rashidi?

'Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences,
Ahvaz, Iran, *Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Technology advancements in synthesis and modification of nanoscale materials have advanced the development
of different medical applications. Nanoparticles (NPs) have demonstrated promising potentials in diagnostic
medicine especially for magnetic resonance imaging (MRI). Iron oxide, gold, and gadolinium NPs have been used
in preclinical and clinical studies as contrast enhancing agents. Studies are ongoing to find the optimum parameters
of these NPs as contrast agents (CAs) of MRI. This study aims to review the recent applications of iron oxide,
gold, and gadolinium NPs as contrast enhancing agents in MRI for diagnosis of different disorders. The databases
of PubMed (1980-2016), Web of Science (1980-2016), Scopus (1980-2016), and Google Scholar (1980-2016)
were explored using the search terms “Nanoparticles,” “Contrast agents,” “Magnetic Resonance Imaging” and
“disease.” The obtained results were screened for the title and abstract and comprehensively reviewed. MRI
CAs are divided into T1 and T2 CAs, respectively, used for T1 and T2 weighted protocols in MRI. Iron oxide,
gadolinium, and gold NPs are the most common CAs used in MRI. High magnetization values, small size, narrow
particle size distribution are the main features of NPs as CAs in MRI. Gadolinium is the most common T1 CAs
used in MRI. However, it is associated with toxicity which is a serious concern in patients with renal failure. Iron
oxide NPs can be used for these patients. However, the main limitation of iron oxide NPs is limited relaxivity. The
relaxivity strongly depends on the size of NP. Paramagnetic NPs serve as T1 CAs and super paramagnetic NPs
as T2 CAs. Modulating the size of NPs is the main parameter to adjust different NPs for different MRI protocols.
Recent years to overcome the problem of gadolinium and iron oxide NPs, different paramagnetic and super
paramagnetic NPs are developed.
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INTRODUCTION (RF) pulse applied perpendicular to the magnetic field, the

protons will realign themselves with the magnetic field, a

oninvasive assessment and imaging  process referred to as relaxation. MRI signals are modulated

‘ \l of internal organs of a human body by the rates at which protons return to equilibrium after
has been always a main challenge an RF pulse. The difference in T1 and T2 relaxation times

to physicians and researchers.'! Magnetic allow differentiation between soft tissues, bone, air, and
resonance imaging (MRI) is the most common  Jiguids in the body.” Disease detection with MRI is often
diagpgstic imaging modality ) in clin.ical difficult because areas involved in the disease have similar
medicine due to its excellent spatial resolution, . . . . . .
signal intensity compared to the surrounding healthy tissue;

noninvasive and nondestructive nature.”’ MRI is . . .
. . . . therefore, requiring signal enhancement using CAs.[Y CAs
imaging of soft tissue and in some cases cannot

generate a sufficient contrast. The development
of MRI to one of the most powerful techniques
in clinical diagnosis is accompanied by the
progress in the design of contrast agents (CAs),
which enhance image quality.”) MR images
frequently rely on the differences in tissue
relaxation times, both longitudinal (T1) and
transverse (T2), to generate image contrast.™
After protons are excited with a radiofrequency
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interact with water molecules, leading to altered proton
T1 or T2 relaxation times.[”? Contrast in MRI is most often
defined by “T1” (spin—spin) or “T2” (spin—lattice) relaxation
times, depending on the exact pulse sequence used to excite
and then measure the relaxing spins. Exogenous CAs may
be employed to alter local T1 or T2 relaxation times to
produce highly enhanced tissue contrast as compared with
the expected background T1 or T2 signals.®

Nanotechnology has revolutionized the potentials of the MRI
imaging modality. Nanoparticles (NPs) continue to receive
attention in the field of medical imaging for their potential
as specific CAs in vitro and in vivo.’' The combination of
multimodal imaging and theranostics will lead to cutting-
edge technologies in which the potential of the NPs can be
maximized.'” However, the sensitivity at cellular/molecular
imaging level is obviously lower than positron emission
tomography and fluorescence imaging. MRI CAs, such as
superparamagnetic iron oxide NPs (SPIONSs), are emerging
as one of the most promising probes for improving contrast at
cellular or even molecular levels.['*'*) The use of CAs in MRI
facilitates a more accurate diagnosis by enhancing the contrast
between tissues. Recently, CAs have also been combined
with target-directing molecules to visualize specific tissues
and molecules.?*2! In this regard, SPIONs, which induce the
dark contrast enhancement in T2-weighted MR images, have
been commercialized as T2 CAs.!'62227]

In this paper, we will review the characteristics of different
types of NPs including iron oxide, gold, and gadolinium
which have been developed as contrast enhancing agents
in MRI. Characteristics such as size, clinical applications,
protein/ligand, relaxivity, and toxicity for each type of NPs
are discussed.

METHOD

The databases of PubMed, Web of Science, and Google
Scholar were searched from the first data available to 2016.
The following key words were used “MRI” and “CA” and
“NP.” The obtained records were reviewed for the title and
abstract by two authors independently. Then, a consensus
decision was made whether the studies are relevant for the
review topic. Human and animal studies including the use
of NPs the NPs used in MRI. Limited number of studies in
this field and heterogeneity in the design and methodology
of the studies, we aimed to provide a comprehensive and
descriptive overview of all aspect of applications of NPs for
more accurate diagnostic MRI.

Search method

The scientific records were retrieved by a systematic search
of multiple bibliographic databases and the last update of the
search was performed on to December 10" 2016 including
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PubMed (1980-2016), Web of Science (1980-2016), Scopus
(1980-2016), and Google Scholar (1980-2016). The language
of the search was limited to English. The search key words
based on the MeSH heading included “MRI” and “CA” and
“NPs.” The titles and abstracts of all the records retrieved by
the search strategy were reviewed by two authors (AY and
HM) and the relevant papers with full texts available were
used for further assessments. Moreover, the reference lists
of the relevant papers were checked manually to identify
additional eligible studies. These papers also were included
for the full review.

Inclusion and exclusion criteria

The identification and screening of the titles for inclusion
or exclusion were performed independently by the two
reviewers (AY and HM) and disagreements were resolved by
discussion. Only original articles were eligible if they provided
the following characteristics: (1) Human and animal studies
that used of NPs in MRI, (2) in vivo and in vitro studies, (3)
articles that evaluated diagnosis variety of cancers and tumors
using NPs. Studies were excluded if: (a) abstract only, (b)
review or meta-analysis, (c) books, (d) letters, () conference
documents, (f) case reports, (g) editorial, (h) guideline, and
(1) pilot study. The flowchart of the study process is depicted
in Figure 1.

RESULTS
Characteristics of studies

A total of 508 records were retrieved in the searching process.
Studies were excluded if abstract only, review or meta-
analysis, books, letters, conference documents, case reports,
editorial, guideline, and pilot study. Finally, 17 articles
fulfilled the criteria to be included in the final reviewing.

Table 1 presents descriptive information of all studies. The
trials were conducted until 2016 in China, Australia, Korea,
Taiwan, U.S.A, Japan, etc.

NPs should be biocompatible, nontoxic, and stable for
in vivo applications. These features can be controlled by
changing the size and the coating’s properties of NPs.!'328
MRI CAs are divided into T1 and T2 CAs, respectively,
used for T1 and T2 weighted protocols in MRI. Iron oxide,
gadolinium, and gold NPs (AuNPs) are the most common
CAs used in MRI. High magnetization values, small size,
narrow particle size distribution are the main features of
NPs as CAs in MRI. Gadolinium is the most common T1
CAs used in MRI. However, it is associated with toxicity
which is a serious concern in patients with renal failure.
Iron oxide NPs can be used for these patients. However, the
main limitation of iron oxide NPs is limited relaxivity. The
relaxivity strongly depends on the size of NP. Paramagnetic
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Figure 1: The flowchart of the study design process

NPs serve as T1 CAs and super paramagnetic NPs as T2
CAs.

SPIONs

Iron oxide NPs are iron oxide particles with diameters between
1 and 100 nm. The two main forms are magnetite (Fe,0,)
and its oxidized form maghemite (y-Fe,0,). Magnetite has an
inverse spinal structure with oxygen forming a face-centered
cubic crystal system. In magnetite, all tetrahedral sites are
occupied by Fe3+ and octahedral sites are occupied by both
Fe3+ and Fe2+. Maghemite differs from magnetite in that all
or most of the iron atoms are in the trivalent state (Fe3+) and
by the presence of cation vacancies in the octahedral sites.
Maghemite has a cubic unit cell in which each cell contains
32 O'ions, 21/,Fe3+ ions, and 27, vacancies.!'**>*33

Gadolinium NPs

Gadolinium (Gd*") ion is the most commonly used metal
ion as CA in MRI. The main characteristic of Gd*" ion is
the presence of seven unpaired electrons combined with a
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long electron spin relaxation time that makes this metal a
very efficient relaxation enhancing agent.**3%! The five MRI
CAs approved by the FDA are based on the Gd*" ion, the
material has high ability to catalyze the relaxation of the
water signal and create positive contrast in MRL.P! Several
methods are known for the synthesis of gadolinium oxide
NPs, mostly based on precipitation of the hydroxide by
the reaction of gadolinium ions with hydroxide, followed
by thermal dehydration to the oxide. The NPs are always
coated with a protective material to avoid the formation
of larger polycrystalline aggregates.l**7333¢38 Gadolinium
oxide NPs are potential CAs for MRI. Sizes of these NPs are
<65 nm. Gadolinium oxide NPs have a relaxivity of <20/s/
mM. The main clinical challenge of using gadolinium NPs
is high toxicity of these agents. Gadolinium is very toxic
in ionic form (Gd*" ion) which extremely interferes with
calcium channels and protein binding sites so that cannot be
administered directly.["*** Free Gd ions accumulate in the
liver, spleen, kidney, and bones. To reduce the side effects
of toxic ions and prevent tissue interaction, Gd** ions are
combined with chelating ligands. However, toxic Gd** ions
may still be released from some chelates via transmetallation
with other metal ions such as Zn?*, Ca?", and Cu?" inside the
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