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Abstract

The hypoxia-inducible factor (HIF) system plays a dominant role in the regulation of oxygen balance. There are 
three forms of HIF protein, whose function is being actively studied by the medical and biological environment. 
HIF-1 consists of α- and β-subunits. The α-subunit is destroyed under normoxia by oxygen-dependent enzymes 
such as prolyl hydroxylase domain and factor-inhibiting HIF-1. In hypoxic condition, a complex of HIF-1α 
and HIF-1β forms a transcription factor that controls the expression of several hundred genes. HIF-1 activity is 
primarily aimed at reducing mitochondrial respiration, activating glycolysis, and increasing the oxygen capacity 
of the blood and organs vascularization. Under hypoxic condition, HIF-1 reduces the activity of mitochondria, 
which prevents the generation of reactive oxygen species and protects the cells. On the transgenic animal models, 
as well as in the study of cardiac tissue biopsies in patients with myocardial infarction, the protective role of HIF in 
ischemic myocardial injuries was confirmed. During hypoxia of the brain, HIF plays an ambiguous role. There is 
evidence that astrocytic HIF-1 plays a negative role, and neuronal HIF-1 causes neuroprotection during hypoxia. 
The structure of HIF has a relatively low variability even in interspecific comparison. Molecular epidemiological 
studies conducted to date reveal a close relationship between the polymorphism of the HIF system genes with a 
wide range of cardiovascular, inflammatory, and oncological diseases. The study of the HIF system can contribute 
to the discovery of new targets and methods of pharmacological effects for the treatment of cardiovascular, 
oncological, rheumatological, and endocrinological pathology.
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INTRODUCTION

Being one of the most common causes of 
cell alteration, hypoxia plays a key role 
in the pathogenesis of most diseases and 

critical conditions. This is associated with the 
presence of conservative O2 balance regulation 
systems with pleiotropic, mutually overlapping 
effects. At the moment, the dominant role in 
the regulation of O2 balance is assigned to the 
hypoxia-inducible factor (HIF) system, which 
includes three molecules: HIF-1, HIF-2, and 
HIF-3. HIF-1 and HIF-2 show to a certain 
extent similar activity.[1] HIF-3 has a structural 
similarity in some domains but acts as a negative 
regulator of two other family members.[2]

MOLECULAR BIOLOGY OF HIF-1

HIF-1 is a heterodimeric protein (122–132 Kd), 
consisting of α- (chromosome 14) and 

β- (chromosome 1) subunits. Both subunits have a helix-loop-
helix motif and Per-Arnt-Sim (PAS) domains with DNA-
binding ability.[3,4] An important feature of the α-subunit is 
instability and cytoplasmic localization. The β-subunit is 
permanent and localized in the nucleus. In addition to those 
mentioned, the a-subunit contains two more functionally 
significant domains: Oxygen-dependent degradation (ODD) 
domain and transactivation domain (TAD), which influence 
on its activity and existence duration. In the normoxia, the 
enzymes such as prolyl hydroxylase domain (PHD) and factor-
inhibiting HIF-1 (FIH-1) were attached to join OH-groups 
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to the proline residue (Pro-402 or Pro-564) of ODD domain 
and the asparagine residue (Asn-803) of TAD domain. These 
modifications make HIF-1α available for ubiquitination with 
further 26-S-proteasomal degradation[5,6] and block binding 
to natural coactivators such as CREB-binding protein (CBP) 
and p300.[7-9] Both of these enzymes belong to the group of 
Fe–, a-ketoglutarate-dependent dioxygenase and are used as 
substrate O2

.[Figure 1]. Thus, their activity is directly related 
to the concentration of oxygen and decreases with hypoxic 
condition.[10]

In the case of an increase in the concentration of HIF-1a, 
the HIF-1a/CBP/p300 complex moves to the nucleus, where 
after joining with HIF-1b, it forms a transcription factor 
interacting with DNA. The method of immunoprecipitation 
of chromatin and the use of biochips have shown that in 
response to an increase in HIF-1 when exposed to hypoxia, 
it’s shows several hundred to 1000 genes are expressed.[11,12]

PHYSIOLOGICAL EFFECTS OF HIF-1

Semenza[13] distinguished two categories of HIF-dependent 
genes. The first group includes genes that mediate the increase 
in oxygen delivery. The second group includes genes that 
reduce its consumption. The first category activates/modulates 
O2 transport systems. The products of these genes are 
molecules such as erythropoietin (EPO), vascular endothelial 
growth factor, transferrin, transferrin receptor, and endothelial 
NO-synthase (NOS). The second category acts by changing 
the ratio between mitochondrial respiration and glycolysis. 
The first measure is to block the entry of pyruvate into the 
tricarboxylic acid cycle (TCA) and to activate a glycolysis 
enzymes. For example, activation of pyruvate dehydrogenase 
kinase leads to inactivation of pyruvate dehydrogenase, an 
enzyme necessary to convert pyruvate to acetyl-CoA, which 
is used as the first link in the TCA.[14] HIF-1 also inhibits the 

activity of the TCA enzymes, since acetyl coenzyme A can be 
obtained by the cell not only from pyruvate.

The next measure is more radical and is aimed at the induction 
of mitochondrial autophagy using bNIP3, Beclin-1, and 
Atg5.[13,15] Finally, HIF-1 through increased expression of 
glucose transporters GLUT-1, 2, and 3 enhances the flow 
of glucose into the cell.[16,17] We can also select another 
group of genes - proapoptotic factors (bNIP3, Noxa, Nix, 
and RTP801), the expression of which prevails in the early 
response to critical ischemia.[18]

In addition, the effects of HIF-mediated hypoxic adaptation 
strategies can be divided into (1) intracellular, due to 
reorganization of the mechanisms of energetic homeostasis 
of the cell and control of intracellular organelles or apoptosis; 
(2) local, associated with the secretion of regulatory molecules 
into the extracellular space; and (3) systemic aimed at increasing 
the overall resistance of the organism to hypoxia and mediated 
by the release of regulatory molecules into the blood [Figure 1].

HIF AND OXIDATIVE STRESS

Of the above effects of HIF, the most important and 
fundamental is the reduction of mitochondrial respiration by 
inhibiting the operation of the electron transport chain and 
the induction of mitochondrial autophagy. In the process of 
sequential movement of electrons along the components of 
the respiratory chain to oxygen (which as a result is reduced to 
water), an electrochemical gradient is created, which is used 
to synthesize adenosine-5’-triphosphate (ATP). However, 
some of the electrons combine with O2 prematurely. It upsets 
the electron/O2 balance and leads to the formation of reactive 
oxygen species (ROS).[19]

Interesting data were obtained by culturing mouse fibroblasts 
knocked out by HIF-1 with 0.5–1% pO2. When compared 
with normal mouse fibroblasts cultured with 20% pO2, it 
turned out that, in the first, the level of ATP was even higher 
than in the second, but their death occurred much earlier due 
to the accumulation of ROS.[14]

If we draw an analogy, then we can compare the mitochondria 
with a nuclear power plant, glycolysis, with a thermal 
power plant, and oxygen, with a cooling system. A nuclear 
power plant is much more productive, but in conditions of 
a cooling deficit, its work becomes unsafe. The function of 
the HIF is to change the energy source to a more primitive 
but safe (glycolysis) one in time. Thus, the primary adaptive 
significance of HIF-1-dependent transition from redox to 
glycolytic metabolism under hypoxic conditions is determined 
by the need to maintain redox homeostasis, rather than 
oxygen levels. There is reason to believe that the regulation 
of mitochondrial activity can occur through the direct effect 
of HIF-1a on mitochondria without the participation of 
nuclear DNA.[19] HIF-2 has a similar antioxidant potential.[20]

Figure 1: Molecular physiology of hypoxia-inducible factor 
(HIF)-1. Hypoxia decreases the activity of prolyl hydroxylase 
domain and FIH-1 activity and prevents the joining of OH- to 
HIF-1a. HIF-1a without hydroxyl groups can penetrate the 
nucleus, form a complex HIF-1a/HIF-1b/CREB-binding 
protein/p300, and interact with target genes. VEGF: Vascular 
endothelial growth factor, VEGFRs: Vascular endothelial 
growth factor receptors, EGF: Epidermal growth factor, 
EPO: Erythropoietin, EPO receptor, PDK1: Pyruvate 
dehydrogenase kinase isozyme 1
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Despite this, the antioxidant properties of HIF-1 can be 
replaced by prooxidant with changing conditions of hypoxia. 
It has been demonstrated that, in some tissues, chronic 
ischemia-reperfusion leads to the generation of ROS through 
the activation of HIF-1.[21]

CARDIOVASCULAR PATHOLOGY

Mice with HIF-1a -/- genetic knockout die in the prenatal 
period with multiple cardiac, vascular, and erythropoiesis 
development disorders.[22] Depending on the genetic 
background, mice lacking HIF-2α: Died on day 12 of 
embryogenesis with vascular defects[21] or bradycardia due to 
insufficient catecholamine production.[19]

Depending on the organ, degree, and duration of ischemia, as 
well as the speed of its onset, HIF has various effects: From 
protector to damaging. This ambiguity is determined; among 
other things, by the fact that, in parallel with the activation 
of HIF, a large number of molecular cascades are triggered 
in response to ischemia and the total effect is determined by 
their joint contribution.

Heart stroke

HIF-1 plays an important role in the pathogenesis of 
myocardial infarction. A study of cardiac tissue biopsies 
in patients with various forms of coronary artery disease 
showed that HIF-1a levels increased during the 1st h of 
infarction, with high levels of elevation associated with a 
more favorable prognosis.[23]

Knockout of one HIF allele is associated with severe 
maladaptation to hypoxia and ischemia.[24,25] Transgenic 
mice with overexpression of HIF-1a with occlusion of 
the coronary arteries show a smaller infarction area and a 
higher degree of vascularization than rodents with normal 
gene expression.[26] Moreover, it seems that HIF-1a plays a 
key role in the phenomenon of ischemic preconditioning, 
which is to increase resistance to prolonged hypoxia after 
first conducting one or more short ischemia-reperfusion 
cycles. During intermittent ischemia/reperfusion, there is a 
significant increase in the concentration of HIF-1a, as well as 
other isoforms of the HIF-1a subunit, and this event is critical 
and determines the effectiveness of cardioprotection. It is 
shown that the degree of increase in the activity of the main 
effector of preconditioning, the purinergic system, depends 
on the induction of HIF-1. In particular, HIF-1α is involved in 
the coordinated induction of ecto-5’-nucleotidase, adenosine 
A2B receptor, and adenosine kinase enzyme.[27-30]

Another phenomenon - distant preconditioning (DPC) has 
been studied for its association with HIF-1. The phenomenon 
is that pre-ischemia of one organ reduces damage to another 
organ during its ischemia. Knockout or pharmacological 

inhibition of PHD-2 appeared to enhance the effect of 
DPC. The in-depth study showed that the second substrate 
PHD-2 plays the leading role in this process, not HIF-1 
(the co-substrate required for the hydroxylation of HIF-a-
ketoglutarate. A-ketoglutarate accumulates, enters the liver, 
is metabolized to kinureric acid [kynurenic acid], and finally 
determines the effects of DPC).[31]

Brain stroke

HIF-1 is widely expressed in the brain.[32] HIF has been 
shown to affect brain development and memory consolidation 
processes.[33,34]

Both systemic hypoxia and brain hypoxia increase the 
concentration of HIF-1a,[35,36] and its expression is maximal 
in the penumbra zone.[37] Concerning the participation of 
HIF-1 in various forms of cerebral ischemia, a large amount 
of data have been accumulated, indicating both its positive 
and negative role.

Many studies demonstrate the involvement of HIF-1 in 
neuroprotection in ischemia-reperfusion.[38] By studying 
ischemic preconditioning on genetically modified, it was 
found that HIF-1-dependent adaptive pathways are only 
relevant in the early response to hypoxia since the HIF-1 
knockdown did not affect the volumes of ischemic damage in 
the delayed ischemic preconditioning model.[18,39]

Studies using various models of focal and global cerebral 
ischemia have shown that the accumulation of HIF-1α 
protein correlates with the expression of target genes 
that encode the proteins involved in various adaptive 
responses. As mentioned, the HIF-responsive protein EPO 
has neuroprotective properties in acute brain hypoxia. 
Introduction of soluble EPO receptors to rats eliminates the 
neuroprotective effects of ischemic preconditioning.[40]

However, some experiments have demonstrated that HIF-1 is 
involved in the induction of proapoptotic factors [bNIP3 and 
p53] and an increase in the infarction zone.[39,41-45] Apparently, 
the difference in effects is explained by the degree and model 
of ischemia.

Local knockout of HIF-1 in astrocytes, while maintaining 
normal expression in neurons, significantly reduces hypoxic 
brain damage, which indicates the pathological effect of 
astrocytic HIF-1 on the viability of neurons. In contrast, 
the loss of HIF-1 in neurons slightly reduced the ability of 
neurons to resist hypoxia. These results are associated with an 
increased activity of inducible NOS (iNOS) in astrocytes.[39,46]

Lower limb ischemia

Not surprisingly, results comparable to those described were 
obtained in studies on ischemia models of other localization. 
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For example, ligation of the femoral artery in HIF-1a-
defective mice leads to more serious damage compared to the 
wild type, and local genetic modification by intramuscular 
injection of adenovirus encoding an O2-resistant form of 
HIF-1a (AdCA5) led to improved blood circulation and 
prevention lower limb necrosis in models of peripheral artery 
disease and diabetes in mice.[1]

GENETICS OF HIF

Currently, 34 SNPs are found in the HIF-1a gene. More 
serious mutations with a significant effect on the activity 
and expression of the protein were not registered, probably 
due to the fundamental importance of the molecule for the 
development of the organism. In addition, the HIF structure 
has relatively low variability, even when interspecific 
comparison. Phylogenetic analysis demonstrated the 
highly conservative nature of the oxygen-dependent and 
transactivating HIF domains.[47]

The assumption that the same variations in the HIF gene 
structure may entail beneficial or harmful properties arising 
from the ambiguity of participation in various pathological 
processes and is confirmed by the data of molecular genetic 
studies.

HIF-1a

At present, a significant association of the HIF-1a gene 
polymorphism with a wide range of diseases and conditions 
is shown from the increased stamina to inflammatory 
connective tissue diseases. This agrees well with the above 
information about the biology of the work of this factor. More 
detailed and complete information is given in the review of 
Gladek et al.[48]

HIF-2a

Genetic studies of HIF-2a endothelial PAS domain protein 
1 show that this gene is propped up by hypoxic selection 
in highland residents. Several mutations are associated 
with phenotypes such as mountain sickness, hemoglobin 
concentration, high-altitude pulmonary hypertension, and 
high-altitude polycythemia. Mutations that increase the 
function of the gene are common in Tibet, and this applies to 
both the human population and many animals. It is believed 
that the human population carries these mutations due to the 
introgression of the Denisovan genes.[49-53]

HIF-3a

From the point of view of human genetics, the HIF-3a 
molecule remains poorly understood. The human HIF-3α 
gene undergoes extensive alternative splicing, which leads to a 

large structural diversity.[54] At present, strict associations have 
been proven only for a few phenotypes, including lung cancer 
for rs3810302[55] and obesity for rs3826795.[56] In addition, 
epigenetic modifications, in particular, the methylation level 
of the HIF-3a gene in peripheral blood and adipose tissue is 
associated with body mass index and the risk of developing 
type 2 diabetes.[57]

CONCLUSION

HIF, as one of the fundamental intracellular systems, deserves 
close attention from biologists, doctors, and pharmacologists. 
The information currently available on the biology of the HIF 
system and its involvement in the pathogenesis of various 
diseases is to some extent fragmentary and insufficient. 
A more detailed definition of the role of this system will 
provide insights into new pharmacological targets for the 
treatment of atherosclerosis, diabetes mellitus, cancer, 
obesity, coronary heart disease, retinopathy, etc.
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