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INTRODUCTION

Lung cancer is the prevalent type of 
cancer afflicting both men and women. 
It has turned out to be the most common 

cause of several million cancer-related deaths 
worldwide. The World Health Organization 
has stated that prolonged exposure to tobacco 
smoke and carcinogenic polycyclic aromatic 
hydrocarbons (PAHs) poses to be the major 
cause of lung cancer.

Cytochrome P450s constitute a category of 
haem-containing enzymes.[1] The family 1 
enzymes of this category play a major role 
in the activation of PAHs.[2] Cytochrome 
P450, family 1, subfamily A, polypeptide 1 
(CYP1A1) is a member of the cytochrome 

P450 superfamily of enzymes.[3] CYP1A1 is involved in 
Phase I xenobiotic and drug metabolism. It is also known 
as aryl hydrocarbon hydroxylase (AHH) whose expression 
is regulated by a ligand-activated transcription factor, aryl 
hydrocarbon receptor (AHR).[4] Earlier reports have related 
the expression of both AHR and CYP1A1 to smoking in lung 
adenocarcinoma patients.[5]
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Abstract

Introduction: Metabolism of carcinogens plays a key role in cancer. Cytochrome P450, family 1, subfamily 
A, polypeptide 1 (CYP1A1) is one of the main cytochrome P450 enzymes. It is involved in the activation of 
compounds such as polycyclic aromatic hydrocarbons with carcinogenic properties associated with lung cancer. 
Inhibition of enzymes that activate carcinogenesis is a major strategy of chemoprevention. Thus, CYP1A1 is 
selected as the target protein. Crucifer vegetables offer a promising source of phytochemicals that are emerging 
as strong contenders in the arena of cancer chemoprevention and thus can be analyzed as ligands to the selected 
target. Aim: The study is an attempt to find an in silico solution to lung cancer by CYP1A1 inhibition-based 
chemoprevention using crucifer phytocomponents. Materials and Methods: Bioinformatics databases and 
tools are used. The study involves the structural analysis of CYP1A1 and its interaction with crucifer ligands 
using Modeller 9V2 and AutoDock, respectively, as the prominent software. Pharmacokinetic properties of the 
ligands are also predicted with ACD/I-Lab 2.0 modules. Results: The findings indicated effective active site 
interactions of CYP1A1 with the crucifer phytocomponents. Glucosinolate was found to be the best inhibitory 
ligand with docking energy −16 KJ/mol and 9 hydrogen bonds. The compounds also exhibited preferable drug 
properties. Indole-3-carbinol and 3, 3’-Diindolylmethane seemed to possess more druglikeness comparatively. 
Conclusion: From the study, it can be concluded that crucifer phytocomponents can act as natural, safe, and 
potent drug candidates in anti-lung cancer drug design.
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Polymorphisms in CYP1A1 have been associated with more 
highly inducible AHH activity and positively correlated with 
the occurrence of cancer. These polymorphisms include 
substitution of A→G at nucleotide 2455, resulting in an 
amino acid change of isoleucine to valine at codon 462.[6] 
Similarly, amino acid change of threonine to asparagine at 
codon 461 is due to C→A substitution at nucleotide 2453.[7]

CYP1A1 catalyzes the conversion of various PAHs to highly 
reactive products that can cause oncogenic mutations and 
carcinogenesis.[8,9] Oxidation of Benzo[a]pyrene, a completely 
ubiquitous PAH found in tobacco smoke, is catalyzed by 
CYP1A1 to Benzo[a]pyrene-7,8-epoxide. This can be further 
converted to form Benzo[a]pyrene-7,8-dihydrodiol by 
Epoxide hydrolase. Ultimately, this intermediate is catalyzed 
by CYP1A1 to Benzo[a]pyrene-7,8-dihydrodiol-9,10-
epoxide, which is the consequent carcinogen.[10]

Carcinogenic potential of CYP1A1 in the activation of 
PAHs has been well established both in vitro and in vivo 
investigations. The role of CYP1A1 in the activation of 
aflatoxin B1, a carcinogenic mycotoxin present in foodstuffs, 
to its corresponding 8, 9-epoxide in rabbit lung and liver 
has been documented. Studies in transgenic strains have 
demonstrated the role of CYP1A1 in Benzo[a]pyrene-induced 
carcinogenesis with an increase in CYP1A1 expression 
following PAHs treatment.[11-13] CYP1A1 is also involved 
in catalyzing hydroxylation of heterocyclic amines such 
as 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 
the most abundant heterocyclic amine in cooked meat and 
fish,[14] and tobacco-related N-nitrosamines that induce 
carcinogenesis.[15,16] CYP1A1 with such immense carcinogenic 
potential serves as an effective target in designing significant 
anticancer drugs and hence chosen for the study.

Recently, cancer prevention and treatment through naturally 
available phytoconstituents is receiving significant attention. 

Cruciferous vegetables that include broccoli, Brussels 
sprouts, cabbage, cauliflower, kale, turnips, collard greens, 
kohlrabi, and mustard rutabaga have a number of nutrients 
and phytochemicals with cancer chemopreventive properties. 
Besides providing basic nutrition, they add substantial health 
benefits.[17-19] A positive correlation is found to exist between 
cancer prevention and consumption of cruciferous vegetable 
bioactives.[20]

In silico tools that are fast, safe, and cost efficient are of great 
value to investigate the impact of such compounds at an early 
stage of drug development. The current study focuses on 
the application of such tools and databases in target-based 
therapy for lung cancer, with CYP1A1 as the target, and its 
interaction with crucifer bioactives, for designing potent 
chemopreventive drugs.

MATERIALS AND METHODS

Structural analysis of the target protein

Biological databases and bioinformatics tools were used for 
the study.[21,22] Human CYP1A1 protein was chosen as the drug 
target after studying its role in carcinogenesis. The sequence of 
the target protein (Accession No: P04798) was retrieved from 
UniProt database.[23] The 3D structure analysis for CYP1A1 
was carried out using BLAST[24] and modeled by Modeller 
9V2[25] with the programs Align2d and Model-default. The 
predicted structure was visualized by RasMol,[26] validated 
by Procheck module of structural analysis and verification 
server.[27] Mutations of threonine to asparagine and isoleucine 
to valine were created at codons 461 and 462, respectively, 
in the validated 3D target structure using the tool Swiss PDB 
Viewer,[28] as shown in Figure 1. The active site of the mutated 
CYP1A1 protein was determined by Q-SiteFinder.[29]

Figure 1: Mutations in CYP1A1 at 461 and 462 using Swiss PDB Viewer
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Ligand preparation

The phytoconstituent bioactive compounds of cruciferous 
vegetables, namely, ascorbic acid, 3,3’-diindolylmethane, 
glucosinolate, and indole-3-carbinol, as provided in the 
literature were selected as the ligands for the target protein 
CYP1A1.[19,20,30,31] The structures of the ligands were obtained 
from PubChem compound.[32] The 3D structure of the ligand 
was drawn by the drawing tool ACD ChemSketch.[33] 
Molecular file converter was used for file conversions.[34,35]

Interaction studies

The docking analysis was carried out for the mutated CYP1A1 
protein with the ligand, using AutoDock software.[36] The 
steps involved were editing of macromolecule, preparing 
the ligand, preparing the macromolecule, preparing the grid 
parameter file, starting Autogrid, running AutoDock, docking 
with the best conformation, and analyzing the docking result. 
The results were visualized by WebLab Viewer.[37]

Pharmacokinetic studies

Lipinski had explained pharmacokinetics of a drug in terms of 
its molecular weight, number of hydrogen bond donors, number 
of hydrogen bond acceptors, topological polar surface area 
(TPSA), and number of rotatable bonds.[38] These properties of the 
crucifer drug candidates were analyzed using the basic Physchem 
properties module of ACD/I-Lab 2.0.[39] The absorption, 
distribution, metabolism, and excretion (ADME) module was 
utilized to analyze the bioavailability, volume of distribution (Vd), 
and partition coefficient between n-octanol and water (logP).

RESULTS AND DISCUSSION

Structure of the drug target

The alignment of the template 2HI4 A chain of crystal structure 
of human microsomal P450 1a2 with CYP1A1 resulted in 

73% identity, 85% positives of similar amino acids, and 0% 
gaps. The Pfam showed single-domain cytochrome P450 in 
the target protein, as shown in Figure 2.

The PAP file generated by the program align2d of the Modeller 
indicated significant alignment between the template and the 
target. The modeled 3D structure when visualized by RasMol 
as flat ribbon-shaped model showed the presence of alpha-
helix, sheet, loop, and turns, as shown in Figure 3.

The Ramachandran plot for the predicted structure in Figure 4 
showed 93.7% residues in the most favored region and no 
residues in the disallowed region.

Red shaded – the most favored region, dark yellow shaded – 
additional allowed region, light yellow shaded – generously 
allowed region, white – disallowed region.

The root-mean-square deviation as calculated by Swiss 
PDB Viewer was found to be 0.29A°. The value was found 
to be <1A°. This suggested that the template and the model 
superimposed well.

The active site prediction result of CYP1A1 showed the 
pocket with the best site 1 among the 10 binding sites obtained 
from Q-site finder. The site 1 was highly conserved and the 
most favorable site for docking. The active site residues were 
found be:

LEU96, ARG106, MET121, SER122, TRP131, ARG135, 
LEU142, VAL197, ILE198, ASP313, LEU314, ALA317, 
GLY318, PHE319, THR321, VAL322, ALA325, PHE376, 
PHE381, VAL382, PHE384, THR385, ILE386, HIS388, 
GLN411, ILE449, PHE450, GLY451, MET452, LYS454, 
ARG455, LYS456, CYS457, ILE458, GLY459, GLU460, 
ASN461, VAL462, ALA463, GLU466, VAL467, LEU496.

Docking results

Hydrogen (H) bonds and the residues involved in bonds 
between the target protein and the crucifer ligands, in the 

Figure 2: Pfam result of CYP1A1 with single-domain cytochrome P450
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docked models with their docking energies are obtained 
in Table 1. The docked conformations, as illustrated by 
WebLab Viewer, are shown in Figure 5. The final docked 
conformations of the target with the ligands were evaluated 
based on the docking score and the number of H-bonds 
formed. The conformation with minimum docking value and 
maximum number of H-bonds was found to be stable. Thus, 
glucosinolate seemed to be the best-docked ligand. However, 
on the whole, all the four crucifer ligands showed significant 
docking results. The effective docking of these compounds 
with CYP1A1 suggested their intact blocking of the active 
site of the target, thereby inhibiting the enzyme and thus 
preventing carcinogenesis.

Drug properties and anticancer potential of ligands

Adverse drug reactions have become the prominent cause for 
the failure of drugs. Thus, it is highly necessary to analyze 
the toxicity of drugs along with their physicochemical 
and ADME properties.[40] Drug properties of the crucifer 

compounds studied, as shown in Table 2, were found to be 
favorable.

Oral bioavailability denotes the extent to which the active 
principle of the drug molecule can enter the systemic 
circulation and reach the target site after oral administration. 
Lipophilicity, degree of ionization of the molecule and many 
other factors determine the rate of diffusion. Vd indicates the 
distribution of drug in the body to that in the blood at the 
same time. It depends on the relative affinity of the drug for 
the blood and tissues.[41] Bioavailabilities of ascorbic acid and 
glucosinolate were found to be <30% and were dependent 
on their lipophilicities. Indole-3-carbinol showed maximum 
bioavailability. The greater value of 3, 3’-Diindolylmethane 
supported that Vd values could be larger for very hydrophobic 
drugs.[42,43]

According to Lipinski’s Rule of Five, a good drug compound 
should have molecular weight <500 Daltons, partition 
coefficient between n-octanol and water (logP) <5, H-bond 
donors <5, and H-bond acceptors <10, all being multiples of 
5.[38] It is found that the molecular weight range within 180–500 
Daltons seems to be closely associated with druglikeness.[44] 
In the current study, all the four crucifer compounds obeyed 
Lipinski’s rule, though indole-3-carbinol’s molecular weight 
exhibited lesser value. Among the compounds studied, 
all except glucosinolate had H-bond donors <5. Again, 
glucosinolate seemed to be the only compound with H-bond 

Figure 3: 3D cartoon model of CYP1A1 as deciphered by 
RasMol, showing alpha-helix (pink), sheet (yellow), loop 
(white), and turns (blue)

Figure 4: Ramachandran plot of the modeled CYP1A1

Table 1: Docking results of CYP1A1 – Crucifer 
ligand complexes

Crucifer ligand Docked 
residues 
(target ligand)

Total 
number of 
H‑bonds

Docking 
energy 

(KJ/mol)
Ascorbic acid ARG106‑HH11

ARG135‑HE
PHE450‑O
ARG455‑NE
LYS456‑O
ILE458‑N (2)

7 −6.49

3,3’‑Diindolyl 
methane

ARG106‑HH11
ARG455‑HE (2)
ARG455‑HH22

4 −10.0

Glucosinolate SER122‑N
TRP131‑HE1
THR385‑OG1
ILE386‑O
ILE386‑N
ARG455‑HE
ARG455‑O (2)
ILE499‑O

9 −16.0

Indole‑3‑carbinol ARG135‑HE
ARG135‑NE
ARG455‑HH22
ARG455‑HE
ARG455‑NE
LYS456‑O

6 −6.91
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acceptors more than 10. It is the presence of greater number of 
H-bond donors and acceptors in this compound that accounts 
for the greater number of H-bond formation with the target.

TPSA indicates the van der Waals surface area of all 
nitrogen, sulfur, and oxygen atoms along with their attached 
H-atoms.[45] Compounds with TPSA equal to or less than 140 
Å2 and 10 or fewer rotatable bonds are associated with good oral 
bioavailability.[46] TPSA of all the compounds studied except 
glucosinolate was <140 Å2. Number of rotatable bonds of all 

these compounds was found to be <10. In general, compounds 
with high molecular weight showed more number of rotatable 
bonds. A positive correlation existed between TPSA, H-bond 
count, molecular flexibility, and molecular weight.[46-48] That 
was why, glucosinolate with more molecular weight was found 
to exhibit more TPSA and more number of rotatable bonds 
compared to the other three compounds studied.

LogP is an important property that determines the druglikeness 
of a given molecule by measuring its lipophilicity.[49,50] 

LogP values of the compounds studied were all <5, obeying 
Lipinski’s rule. This indicated that these compounds 
possessed good absorption and permeation capabilities. 
Among the four, 3,3’-Diindolylmethane exhibited maximum 
lipophilicity and ascorbic acid, the least. On the whole, 
indole-3-carbinol and 3, 3’-Diindolylmethane showed better 
drug properties compared to other two.

Scientific and epidemiological evidences further substantiate 
the observed results emphasizing the protective role 
of cruciferous vegetables against cancer. A number of 
mechanisms such as protection against reactive oxygen 
species, retardation of tumor growth, and induction of 
apoptosis have been reported.[51]

Indole-3-carbinol, occurring naturally in crucifers, is a 
powerful antioxidant that scavenges free radicals. In vitro 
and in vivo carcinogenesis models have demonstrated the 
chemopreventive role of this compound during initiation and 
promotion phases of cancer development.[20]

A wide collection of literature has addressed the presence of 
glucosinolates as a distinctive feature of crucifer vegetables. 

Table 2: Drug properties of crucifer compounds
Ligand Bioavailability Vd (L/kg) Physicochemical property LogP
Ascorbic acid <30% 0.34 Molecular weight: 176.12

No. of hydrogen bond donors: 4
No. of hydrogen bond acceptors: 6
TPSA: 107.22
No. of rotatable bonds: 2

0.04

3, 3’‑Diindolylmethane 30–70% 2.53 Molecular weight: 246.31
No. of hydrogen bond donors: 2
No. of hydrogen bond acceptors: 2
TPSA: 31.58
No. of rotatable bonds: 2

4.54

Glucosinolate <30% 0.30 Molecular weight: 448.47
No. of hydrogen bond donors: 6
No. of hydrogen bond acceptors: 11
TPSA: 215.58
No. of rotatable bonds: 7

1.04

Indole‑3‑carbinol more than 70% 1.40 Molecular weight: 147.17
No. of hydrogen bond donors: 2
No. of hydrogen bond acceptors: 2
TPSA: 36.02
No. of Rotatable Bonds: 1

1.25

TPSA: Topological polar surface area, Vd: Volume of distribution

Figure 5: CYP1A1 interactions with (a) ascorbic 
acid, (b) 3,3’-Diindolylmethane, (c) glucosinolate, (d) indole-
3-carbinol. H-bonds are indicated by dotted lines

b

dc

a
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They highlight the cancer chemoprotective attributes of this 
bioactive compound besides its fungicidal, bacteriocidal, 
nematocidal, and allelopathic properties.[31]

It has been reported that diindolylmethane, an essential dietary 
crucifer component, inhibits cell growth and migration by 
downregulating urokinase plasminogen activator associated 
with tumor progression and metastasis. Diindolylmethane 
is found to induce cell apoptosis either by downregulating 
antiapoptotic gene products or by upregulating proapoptotic 
proteins. It is also associated with anti-inflammatory activity, 
regulation of the redox status of the cells during oxidative 
stress, decreasing invasive properties of the tumor cells, 
altering gene expression, and reducing cell growth by 
inhibiting DNA methylation.[19]

Ascorbic acid, also an essential constituent of crucifer 
vegetables, generates significant quantities of hydrogen 
peroxide by autoxidation, to create oxidative stress targeting 
cancer cells. It also acts as a cofactor in the stimulation of the 
2-oxoglutarate-dependent dioxygenase family of enzymes 
that regulate the hypoxic response in angiogenesis and 
metastasis.[30]

Although earlier literature suggests the possible mechanisms 
of the anticancer activity of the crucifer compounds, the 
current work unravels an unknown mechanism of these 
compounds, as a step forward for a novel anticancer therapy.

CONCLUSION

This study demonstrates the potential chemopreventive 
role of crucifer phytocomponents through their potential 
inhibitory interactions with the carcinogenesis inducing 
target CYP1A1. Their pharmacokinetic properties are 
also favorable, supporting their significance. The findings 
thus emphasize the promising scope of these natural drug 
candidates to combat lung cancer.
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