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Abstract

Tuberculosis (TB) is one of the diseases that has affected a wide population in the world, and due to the constant 
development of resistance, it has necessitated the development of potent drugs that can show anti-tubercular 
activity on the resistant strains as well. Among nitrogen-containing heterocycles, pyrazine has attracted significant 
attention in medicinal chemistry due to its chemical simplicity and adaptability in drug design. The current review 
provides the summary of pharmacological aspects of pyrazine derivatives as an anti-tubercular agent, focusing 
on examining the structure–activity relationship (SAR) trends, minimum inhibitory concentration (MIC) values 
as well as the key modifications, such as integrating the electron-withdrawing groups, heterocyclic linkers, and 
lipophilic side chains, that have led to the discovery of potent anti-tubercular drugs. The SAR studies suggest that 
the addition of electron-withdrawing groups and heterocyclic linkers has resulted in compounds with improved 
efficacy compared to the pyrazinamide. The evidence also provides significant insights into the therapeutic 
potential of pyrazine derivatives as scaffolds for next-generation anti-TB drugs.
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INTRODUCTION

Pyrazine is a simple six-membered 
nitrogen-containing heteroaromatic 
scaffold that is used as a versatile 

pharmacophore owing to its structural simplicity 
and adaptability as a pharmacophoric unit.[1,2] 
The presence of two ring nitrogens confers 
distinct electronic characteristics that facilitate 
functional modification while maintaining 
favorable physicochemical properties.[3,4] The 
clinical relevance of the pyrazine scaffold 
is best illustrated by pyrazinamide (PZA), a 
cornerstone agent in standard tuberculosis (TB) 
therapy.[5,6] PZA is a prodrug that is metabolized 
into pyrazinoic acid (POA), which disrupts 
the mycobacterial membrane potential and 
fatty acid synthesis.[7] The pyrazine nucleus 
has been found to prominently contribute to 
several clinically important drugs, due to their 
promising pharmacological activity, stability, 
and binding characteristics.[8] These properties 

make pyrazine an ideal scaffold for drug design. For the 
pyrazine nucleus-containing compounds, the studies have 
identified some most important pharmacological targets, such 
as fatty acid synthase I (FAS-I), dihydrofolate reductase, and 
other metabolic enzymes, as well as mycobacterial biofilm 
formation involved in biosynthesis of cell wall, have been 
identified as potential therapeutic targets for pyrazine-based 
compounds.[9-13] However, its therapeutic utility is hindered by 
unaccountable resistance development, limited activity under 
neutral pH, and adverse effects, which have necessitated the 
innovation of novel analogues with enhanced efficacy. The 
incorporation of various substituents at different positions of 
the pyrazine ring has led to the identification of compounds 
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with promising activity against Mycobacterium tuberculosis, 
including the resistant strains.[14-17] The different mechanism 
of action of pyrazine-containing compounds involve multiple 
targets that are depicted in Figure 1, thereby enhancing their 
broad-spectrum activity and minimizing the probability of 
resistance emergence.[7,18] The SAR studies have provided 
critical insights into the molecular features that are required 
for the optimal anti-tubercular activity within the pyrazine 
series.[19] Newer methods of drug designing, such as in silico 
molecular docking studies and quantitative SQR modeling, 
have further accelerated the rational design of novel pyrazine 
derivatives.[20,21] There are so many pyrazine-containing 
drugs available in the market, which is shown in Figure 2.

Morinamide, one of the derivative of PZA, as shown in 
Figure 3, was investigated in the 1980s, is a pyrazine-2-
carboxamide derivative and structural analogue of PZA, 
acting as a prodrug that is hydrolyzed into POA.[22,23] POA 
disrupts M. tuberculosis by impairing membrane potential 
and energy production, particularly in acidic intracellular 
environments.[24,25] The morpholine moiety present in 
morinamide helps in increasing the lipophilicity, which 
increases the cell wall penetration and oral bioavailability.[26] 
However, it was not approved by the World Health Organization 
and is absent from current first- or second-line TB regimens. 
It is occasionally used in local or experimental protocols, 
but the global regulatory approval is lacking due to limited 
clinical data and comparative efficacy.[5,27]

The chemical modification of the pyrazine-2-carboxamide 
nucleus has been explored as a strategy to produce 
novel and potent anti-tubercular agents . Introduction of 
electron-donating groups like -CH3 or -NH2, and electron-
withdrawing groups such as -X (Cl, Br, F) or NO2 or -CF3 
has been found to significantly affect the biological activities 
by affecting their properties such as lipophilicity, electronic 
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character, and membrane permeability that are essential 
for the proper functioning of bacteria.[28-32] In addition to 
functional group modifications, incorporation of heterocyclic 
moieties such as triazoles, oxadiazoles, thiophenes, and 
piperazines has contributed to improved antimycobacterial 
activity in many reported series.[33,34] Such scaffolds may 
offer better pharmacokinetic and pharmacodynamic profiles, 
in part due to their metabolic stability and favorable 
interaction with biological targets.[35,36] This review focuses 
on the evaluation of a series of pyrazine-based derivatives 
where a range of heterocyclic rings with different electron-
donating and electron-withdrawing groups are substituted, 
which will provide valuable relationships for further lead 
optimization.[37-39] This review examines the several reports 
during the years 2010 to 2025 using search engines such as 
PubMed, Google Scholar, and EBSCO. This analysis aims to 
provide insights into the future directions for pyrazine-based 
TB drug discovery and development.

MECHANISM OF ACTION OF PZA

PZA, exerts its anti-tubercular mycobacterial activity 
through different mechanisms involving both confirmed 
and proposed targets, as represented in Figure 4.[40] Rather 
than acting directly, PZA requires intracellular activation 
and is converted to its active form, POA by the enzyme 
called pyrazinamidase.[41] POA accumulates inside the 
bacterial cell, particularly under acidic conditions, leading to 
acidification of the cytoplasm that results in the disruption of 
membrane energetics and transport functions, leading to cell 
death.[18] Beyond this general membrane disruption, POA and 
certain analogues, such as 5-chloro PZA, have been shown 
to competitively inhibit FAS-I at the NADPH-binding site, 
disrupting the synthesis of mycolic acids, which is essential 
for cell-wall integrity.[42,43] Another confirmed mechanism 

Figure 1: Mechanistic insights into marketed pyrazine-based drugs
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Figure 2: Pyrazine-containing marketed drugs

Figure 3: Structural analogs of pyrazinamide

involves the inhibition of trans-translation: POA binds to 
ribosomal protein S1, preventing transfer-messenger RNA 
interaction and thereby blocking this essential ribosome 
rescue pathway.[7] Additional proposed mechanisms include 
inhibition of NAD biosynthesis, disruption of coenzyme 
A, and suppression of (p)ppGpp synthesis by targeting 
guanosine pentaphosphate synthase, inhibition of enoyl-ACP 
reductase (InhA).[44-46]

PYRAZINE-BASED ANALOGUES 
ASPOTENT ANTI-TB AGENTS

Ortho-substituted pyrazine derivatives

Sriram et al. developed and synthesized a series of PZA 
mannich base-incorporated piperazine-substituted derivatives 
and screened for their anti-tubercular activity against H37Rv. 
Compound 7, containing a fluoroquinolone–urea–piperidine 
hybrid, showed notable efficacy, with an MIC of 0.39 
(against MTB) and 0.2 μg/mL (against multidrug-resistant 
TB [MDR-TB]), respectively, compared to the standard 
drug PZA with the MIC value of 12.5 μg/mL (MTB) and 
>25 μg/mL (MDR-TB).[32,47] Hassan et al. designed and 
synthesized pyrazine-incorporated carboxamide, pyrazole 
carbothioamide, and thiophene-based novel derivatives and 
screened the compounds for their anti-tubercular efficacy. 
The compounds 8(a-d) contain an electron-withdrawing 

group such as bromo, chloro, and an electron-releasing group 
methyl group. The compound 8b, containing the electron-
withdrawing bromogroup, exhibited great efficacy with 
the MIC value of 0.78 μg/mL. Compound 9, containing 
the heterocyclic ring thiophene, also showed good anti-
tubercular activity with the MIC value of 6.25 μg/mL. 
Compound 10, containing a pyrazole carbothioamide group, 
also showed enhanced anti-tubercular activity with the 
MIC value of 3.12 μg/mL. All these compounds showed 
higher or equal anti-tubercular activity, with the reference 
drug PZA having an MIC value of 6.25 μg/mL.[31,48,49] Das 
synthesized pyrazine-1,3,4-oxadiazole-based derivative 
and incorporated substituents such as NH, NH2, triazole, 
and tetrazole groups. Compound 11, which contains a 
1,3,4-oxadiazole hydrazino group, showed the highest 
activity with the MIC value of 6.25 μg/mL compared to the 
standard drug rifampicin with the MIC value of 0.25 μg/mL 
and isoniazid with the MIC value of 0.20 μg/mL.[50] Zhou 
et al. synthesized through rational drug design pyrazine-
carboxamide derivatives incorporating different heterocyclic 
rings with the alkyl linker. Compound 12a – containing a 
piperazine ring, compound 12b – containing a morpholine 
ring, and compound12c – containing a thiomorpholine ring 
(containing oxygen that is likely to increase the hydrogen-
bond acceptor capacity) showed higher activity with the MIC 
value of 12.2, 8, and 10.2 μg/mL, respectively, which was 
higher than that of the standard PZA that has the MIC value 
of 12.5 μg/mL.[51] Zulquramin et al. rationally designed and 
synthesized a pyrazine carboxamide derivative and assessed 
the compounds for their anti-tubercular activity. Compound 
13a, containing an electron-withdrawing group, chlorophenyl 
group and13b containing the cycloheptyl substituent, 
showed enhanced activity with MICs of each of lesser than 
or equal to 6.25 μg/mL, which was 16 times potent than 
that of the standard drug, PZA, which has an MIC value of 
100 μg/mL.[52] Suryawanshi et al. designed and synthesized a 
series of pyrazine oxadiazole derivatives and screened them 
for their anti-tubercular activity. Compounds 14a and 14b 
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both have an electro-withdrawing group, Br, and F, while 14c 
contains an electron-donating group, OCH3, and an electron-
withdrawing group, Br, with MIC values of 3.13 μg/mL each, 
compared to the standard drug, isoniazid, with an MIC value 
of 0.4 μg/mL.[53] Naiket al. synthesised pyrazine incorporating 
a triazole heterocyclic ring by drug design and evaluated the 
compounds for their anti-tubercular activity. Compound 15, 
containing the electron-withdrawing group trifluoromethyl, 
showed the maximum potency among the series and was 
found to have the same MIC value as that of PZA, with an 
MIC value of 3.12 μg/mL.[34,54] Shivakumar et al. synthesized 
drug design pyrazine carbohydrazide derivatives and 
evaluated their anti-tubercular activity. Compounds 16a and 
16b contain electron-withdrawing groups, bromo and nitro 
groups, whereas compound 17 with the nitrophenyl group 
showed greater potency than the standard drug PZA (MIC 
value of 3.12μg/mL), with each MIC value of 1.56 μg/mL.[55] 

The compounds’ chemical structures are shown in Figure 5, 
and the MIC value with the structural feature is shown in 
Table 1.

Ortho-meta-substituted pyrazine derivatives

Dolezal et al. synthesized pyrazine carboxamides substituted 
derivatives and tested for their anti-mycobacterial activity. 
Compound 18a, containing trifluoromethyl, and compound 
18b, containing trifluoromethyl and a tert-butyl group as a 
substituent, showed maximum anti-tubercular activity with a 
MIC value of 6.25 and 3.13 μg/mL, respectively.[56] Dolezal 
et al. synthesized pyrazine carboxamide-aryl derivatives 
and evaluated anti-tubercular activity. Compound 19a, 
containing iodide and a methyl group, and compound 19b, 
containing additional tert-butyl and an electron-withdrawing 

Figure 4: Different anti-tuberculosis mechanistic pathways for the pyrazine ring-containing reported drugs

Table 1: MIC values of pyrazine‑containing derivatives
Compound code Structural features MIC value Reference
1 Quinoline and pyrazine 0.39 Sriram et al. (2006)

2 Pyrazole and pyrazine 0.78 Hassan et al. (2020)

3 Thiophene and pyrazine 6.25

4 Pyrazoline and pyrazine 3.12

5 1,3,4‑oxadiazole and pyrazine 6.25 Das (2015)

6 Morpholine, thiomorpholine, piperazine, and pyrazine 12.2, 8 and 10.2 Zhou et al. (2017)

7 Cycloheptane and pyrazine 6.25 Zulquramin et al. (2023)

8 1,3,4‑oxadiazole and pyrazine 3.13 Suryawanshi et al. (2025)

9 Triazole and pyrazine 3.12 Naik et al. (2024)

10 1,3,4‑oxadiazole and pyrazine 1.56 Shivakumar et al. (2025)

11 7H‑[1,2,4]triazolo[3,4‑b][1,3,4]thiadiazine and pyrazine 1.56
MIC: Minimum inhibitory concentration
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Figure 5: Compounds containing ortho-substituted pyrazine

group, chlorine, showed four times higher potency with MIC 
values of <2 μg/mL and 4 μg/mL, respectively, than that 
of the standard drug PZA (MIC value 8 μg/mL).[57,58] Zitko 
et al. synthesized pyrazine carboxamides and evaluated the 
compounds for their anti-tubercular activity. Compound 20a 
contains electron electron-withdrawing group, chloride, and 
an electron-donating group-OH, whereas compound 20b, 
containing an electron-withdrawing group -COOH and an 
electron-donating group -OH, showed maximum potency 
with the MIC value of 1.56 and 3.13 μg/mL, respectively, 
whereas the standard drug PZA has a MIC value of 6.25–
12.5 μg/mL.[59] Servusová et al. synthesized pyrazine 
carboxamide derivatives for their anti-tubercular activity. 
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Compound 21a, containing the electron-withdrawing group 
chloride, and compound 21b containing the electron-
donating group methyl, showed maximum potency with the 
MIC value of 6.25 and 3.13 μg/mL, respectively, against 
Mycobacterium kansasii, to which the standard compound 
PZA isunsusceptible.[60] Zitko et al. designed and synthesized 
pyrazine carboxamide derivatives and their compounds for 
their anti-tubercular activity. Compound 22a, containing the 
electron-withdrawing group fluoro group, compound 22b 
and 22c containing the electron-withdrawing group chloro, 
and compound 22d containing the electron-withdrawing 
group iodo showed higher potency of each MIC value of 
3.13 μg/mL compared to the reference drug PZA with the 
MIC value of 12.5 μg/mL.[61] Jandourek et al. synthesized 
pyrazine carbonitrile derivatives and studied the compounds 
for their anti-tubercular activity. Compounds 23a and 23b, 
containing an electron-withdrawing group, chloride, and 23c, 
containing an electron-withdrawing group, trifluoromethyl 
group, showed maximum potency with the MIC value of 
6.25 μg/Ml against H37Rv TB compared to the standard drug 
PZA with the MIC value of 12.5 μg/mL.[62] Semelkova et al. 
designed and synthesized pyrazine carboxamide derivatives 
and incorporated long alkylamino groups, and found that the 
compounds containing longer alkylamino chains are more 
potent than the substituents with the shorter alkyl chains. 
Among the synthesized compounds, compounds 24a, 24b, 
and 24c showed the maximum potency with each MIC value 
of 25 μg/mL compared to the standard drug isoniazid with an 
MIC value of 0.1–0.39 μg/mL.[63] Semelkovaet al. synthesized 
N-Benzyl pyrazine carboxamide derivative and screened 
the compounds for their anti-tubercular activity. Compound 
25a, containing the electronegative group methyl group, and 
compound 25b, containing the electron-withdrawing group 
chlorogroup, showed anti-tubercular activity with the MIC 
value of each 12.5 μg/mL compared to the standard drug 
isoniazid with an MIC value of 0.2 μg/mL.[64,65] Jandourek 
et al. designed and synthesized a pyrazine carboxamide 
derivative incorporating various substituted benzyl amino 
derivatives at the 3-position. Compounds 26a and 26d 
contain the electron-withdrawing group trifluoromethyl, 
whereas 26b and 26c, containing the electron-releasing group 
methyl and the amino group, has shown better or equal potent 
activity with the MIC value of 12.5 μg/mL, 12.5μg/mL, 
1.56μg/mL, and 6.25 μg/mL, respectively, compared to the 
standard drug PZA with an MIC value of 12.5 μg/mL.[66] 
Shaik et al. designed and synthesized chloropyrazine 
carboxamide derivatives incorporating different alkyl 
groups containing several electron-donating and electron-
withdrawing groups, along with some derivatives containing 
heterocyclic rings. Compound 27a, containing electron-
withdrawing chloro group at ortho and para position in the 
phenyl group, showed 16 times improved activity over the 
reference compound PZA (MIC value of 50.80 μg/mL) 
with an MIC value 25.51 μg/mL of whereas compound 27b 
containing electron releasing group 3,4,5-trimethoxyphenyl 
group showed 17 times higher potency with MIC value of 
23.89 μg/mL.[67] Ramesh et al. designed and synthesized 
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Table 2: MIC values of pyrazine‑containing derivatives 
Compound code Structural features MIC value Reference
12 Carboxamide and pyrazine 6.25 and 3.13 Dolezal et al. (2008) 

13 Carboxamide and pyrazine <2 and 4 Dolezal et al. (2009) 

14 Carboxamide and pyrazine 1.56 and 3.13 Zitko et al. (2013)

15 Benzylcarboxamide and pyrazine 6.25 and 3.13 Servusová et al. (2013) 

16 Carboxamide and pyrazine 3.13 Zitko et al. (2015)

17 Benzylamine and pyrazine 6.25 Jandourek et al. (2014) 

18 Long alkyl group and pyrazine 25 Semelkova et al. (2015) 

19 Benzylamine and pyrazine 12.5 Semelkova et al. (2017) 

20 Benzylamine and pyrazine 12.5, 1.56, 6.25, and 12.5 Jandourek et al. (2017) 

21 Aromatic ketone and pyrazine 25.51 and 23.89 Shaik et al. (2020)

22 Pyridine carboxamide and pyrazine 1.59 Ramesh et al. (2024) 
MIC: Minimum inhibitory concentration

Figure 6: Compounds containing ortho-meta-substituted 
pyrazine

Figure 7: Compound containing a polycyclic ring fused to 
pyrazine

pyrazine derivatives for their anti-tubercular activity. 
Compound 28, containing the electron-withdrawing group 

fluoro, showed the maximum potency with the MIC value of 
1.59 μg/mL, whereas the standard drug used is isoniazid with 
the MIC value of 0.1 μg/mL.[68] The compounds’ chemical 
structures are shown in Figure 6, and the MIC value with the 
structural feature is shown in Table 2.

Polycyclic ring fused pyrazine derivatives

Sadykhov et al. designed and synthesised a pyrrole and 
quinoxaline hybrid compound that contains thiophene 
and N, N-dimethyl ethyl substitution. They evaluated the 
compounds for their anti-tubercular activity. Compound 
29 showed the highest potency amongst all the synthesised 
compounds with an MIC value of 12.5 μg/mL compared 
to the standard drug isoniazid with an MIC value 
of 0.06 μg/mL.[69,70] The compounds’ chemical structures 
are shown in Figure 7, and the MIC value with the structural 
feature is shown in Table 3.
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Table 3: MIC values of pyrazine‑containing 
derivatives 

Compound 
code

Structural 
features

MIC 
value

Reference

23 Polycyclic ring 
containing pyrazine

12.5 Sadykhov 
et al. (2024) 

MIC: Minimum inhibitory concentration

Graph 1: Minimum inhibitory concentration value of the novel compounds reported from the year 2010 to 2025 as an anti-
tubercular agent

CONCLUSION

The pyrazine nucleus has emerged as a highly promising 
class of compounds due to its structural simplicity, 
pharmacophoric versatility against M. tuberculosis, for the 
resistant strains as well. The SAR studies suggest that the 
substitutions of the pyrazine ring with electron-withdrawing 
groups or heterocyclic moieties significantly enhance the 
anti-tubercular potency, often surpassing the standard 
drugs like PZA in terms of their MIC values. The effect 
of the various substitutions, such as electron-withdrawing, 
electron-releasing groups, and the various heterocyclic rings, 
has been compiled in Graph 1 for thorough understanding. 
Advances in synthetic methodologies and computational 
modelling have further enabled rapid lead optimization and 
drug-likeness profiling. Taken together, the SAR evidence 
reviewed here indicates that the pyrazine nucleus is not 
merely a structural motif but a modifiable platform capable 
of addressing emerging resistance mechanisms in TB 
therapy.
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