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Abstract

Tuberculosis (TB) is one of the diseases that has affected a wide population in the world, and due to the constant
development of resistance, it has necessitated the development of potent drugs that can show anti-tubercular
activity on the resistant strains as well. Among nitrogen-containing heterocycles, pyrazine has attracted significant
attention in medicinal chemistry due to its chemical simplicity and adaptability in drug design. The current review
provides the summary of pharmacological aspects of pyrazine derivatives as an anti-tubercular agent, focusing
on examining the structure—activity relationship (SAR) trends, minimum inhibitory concentration (MIC) values
as well as the key modifications, such as integrating the electron-withdrawing groups, heterocyclic linkers, and
lipophilic side chains, that have led to the discovery of potent anti-tubercular drugs. The SAR studies suggest that
the addition of electron-withdrawing groups and heterocyclic linkers has resulted in compounds with improved
efficacy compared to the pyrazinamide. The evidence also provides significant insights into the therapeutic
potential of pyrazine derivatives as scaffolds for next-generation anti-TB drugs.
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INTRODUCTION

yrazine is a simple six-membered
P nitrogen-containing heteroaromatic
scaffold that is used as a versatile
pharmacophore owing to its structural simplicity

make pyrazine an ideal scaffold for drug design. For the
pyrazine nucleus-containing compounds, the studies have
identified some most important pharmacological targets, such
as fatty acid synthase I (FAS-I), dihydrofolate reductase, and
other metabolic enzymes, as well as mycobacterial biofilm
formation involved in biosynthesis of cell wall, have been

and adaptability as a pharmacophoric unit.!"?
The presence of two ring nitrogens confers
distinct electronic characteristics that facilitate
functional modification while maintaining
favorable physicochemical properties.>¥ The
clinical relevance of the pyrazine scaffold
is best illustrated by pyrazinamide (PZA), a
cornerstone agent in standard tuberculosis (TB)
therapy.5®! PZA is a prodrug that is metabolized
into pyrazinoic acid (POA), which disrupts
the mycobacterial membrane potential and
fatty acid synthesis."! The pyrazine nucleus
has been found to prominently contribute to
several clinically important drugs, due to their
promising pharmacological activity, stability,
and binding characteristics.®! These properties

Asian Journal of Pharmaceutics * Oct-Dec 2025 ¢ 19 (4) | 1633

identified as potential therapeutic targets for pyrazine-based
compounds.P ¥ However, its therapeutic utility is hindered by
unaccountable resistance development, limited activity under
neutral pH, and adverse effects, which have necessitated the
innovation of novel analogues with enhanced efficacy. The
incorporation of various substituents at different positions of
the pyrazine ring has led to the identification of compounds
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with promising activity against Mycobacterium tuberculosis,
including the resistant strains.!'*!” The different mechanism
of action of pyrazine-containing compounds involve multiple
targets that are depicted in Figure 1, thereby enhancing their
broad-spectrum activity and minimizing the probability of
resistance emergence.l"'® The SAR studies have provided
critical insights into the molecular features that are required
for the optimal anti-tubercular activity within the pyrazine
series.”) Newer methods of drug designing, such as in silico
molecular docking studies and quantitative SQR modeling,
have further accelerated the rational design of novel pyrazine
derivatives.??!l There are so many pyrazine-containing
drugs available in the market, which is shown in Figure 2.

Morinamide, one of the derivative of PZA, as shown in
Figure 3, was investigated in the 1980s, is a pyrazine-2-
carboxamide derivative and structural analogue of PZA,
acting as a prodrug that is hydrolyzed into POA.?2%! POA
disrupts M. tuberculosis by impairing membrane potential
and energy production, particularly in acidic intracellular
environments.?*»! The morpholine moiety present in
morinamide helps in increasing the lipophilicity, which
increases the cell wall penetration and oral bioavailability.*!
However,itwasnotapproved by the World Health Organization
and is absent from current first- or second-line TB regimens.
It is occasionally used in local or experimental protocols,
but the global regulatory approval is lacking due to limited
clinical data and comparative efficacy.?”

The chemical modification of the pyrazine-2-carboxamide
nucleus has been explored as a strategy to produce
novel and potent anti-tubercular agents. Introduction of
electron-donating groups like -CH, or -NH,, and electron-
withdrawing groups such as -X (Cl, Br, F) or NO, or -CF3
has been found to significantly affect the biological activities
by affecting their properties such as lipophilicity, electronic

character, and membrane permeability that are essential
for the proper functioning of bacteria.*®3% In addition to
functional group modifications, incorporation of heterocyclic
moieties such as triazoles, oxadiazoles, thiophenes, and
piperazines has contributed to improved antimycobacterial
activity in many reported series.*** Such scaffolds may
offer better pharmacokinetic and pharmacodynamic profiles,
in part due to their metabolic stability and favorable
interaction with biological targets.?>*¢! This review focuses
on the evaluation of a series of pyrazine-based derivatives
where a range of heterocyclic rings with different electron-
donating and electron-withdrawing groups are substituted,
which will provide valuable relationships for further lead
optimization.?”! This review examines the several reports
during the years 2010 to 2025 using search engines such as
PubMed, Google Scholar, and EBSCO. This analysis aims to
provide insights into the future directions for pyrazine-based
TB drug discovery and development.

MECHANISM OF ACTION OF PZA

PZA, exerts its anti-tubercular mycobacterial activity
through different mechanisms involving both confirmed
and proposed targets, as represented in Figure 4.4% Rather
than acting directly, PZA requires intracellular activation
and is converted to its active form, POA by the enzyme
called pyrazinamidase.*!! POA accumulates inside the
bacterial cell, particularly under acidic conditions, leading to
acidification of the cytoplasm that results in the disruption of
membrane energetics and transport functions, leading to cell
death.'" Beyond this general membrane disruption, POA and
certain analogues, such as 5-chloro PZA, have been shown
to competitively inhibit FAS-I at the NADPH-binding site,
disrupting the synthesis of mycolic acids, which is essential
for cell-wall integrity.***! Another confirmed mechanism
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Figure 1: Mechanistic insights into marketed pyrazine-based drugs
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Figure 3: Structural analogs of pyrazinamide

involves the inhibition of trans-translation: POA binds to
ribosomal protein S1, preventing transfer-messenger RNA
interaction and thereby blocking this essential ribosome
rescue pathway.l”? Additional proposed mechanisms include
inhibition of NAD biosynthesis, disruption of coenzyme
A, and suppression of (p)ppGpp synthesis by targeting
guanosine pentaphosphate synthase, inhibition of enoyl-ACP
reductase (InhA).[4+4¢]

PYRAZINE-BASED ANALOGUES
ASPOTENT ANTI-TB AGENTS

Ortho-substituted pyrazine derivatives

Sriram et al. developed and synthesized a series of PZA
mannich base-incorporated piperazine-substituted derivatives
and screened for their anti-tubercular activity against H37Rv.
Compound 7, containing a fluoroquinolone—urea—piperidine
hybrid, showed notable efficacy, with an MIC of 0.39
(against MTB) and 0.2 ug/mL (against multidrug-resistant
TB [MDR-TB]), respectively, compared to the standard
drug PZA with the MIC value of 12.5 ug/mL (MTB) and
>25 ug/mL (MDR-TB).B2471 Hassan et al. designed and
synthesized pyrazine-incorporated carboxamide, pyrazole
carbothioamide, and thiophene-based novel derivatives and
screened the compounds for their anti-tubercular efficacy.
The compounds 8(a-d) contain an electron-withdrawing

Acipimox
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group such as bromo, chloro, and an electron-releasing group
methyl group. The compound 8b, containing the electron-
withdrawing bromogroup, exhibited great efficacy with
the MIC value of 0.78 ug/mL. Compound 9, containing
the heterocyclic ring thiophene, also showed good anti-
tubercular activity with the MIC value of 6.25 ug/mL.
Compound 10, containing a pyrazole carbothioamide group,
also showed enhanced anti-tubercular activity with the
MIC value of 3.12 ug/mL. All these compounds showed
higher or equal anti-tubercular activity, with the reference
drug PZA having an MIC value of 6.25 ug/mL.B!“#841 Dag
synthesized pyrazine-1,3,4-oxadiazole-based derivative
and incorporated substituents such as NH, NH,, triazole,
and tetrazole groups. Compound 11, which contains a
1,3,4-oxadiazole hydrazino group, showed the highest
activity with the MIC value of 6.25 ug/mL compared to the
standard drug rifampicin with the MIC value of 0.25 png/mL
and isoniazid with the MIC value of 0.20 pug/mL.*% Zhou
et al. synthesized through rational drug design pyrazine-
carboxamide derivatives incorporating different heterocyclic
rings with the alkyl linker. Compound 12a — containing a
piperazine ring, compound 12b — containing a morpholine
ring, and compoundl2c¢ — containing a thiomorpholine ring
(containing oxygen that is likely to increase the hydrogen-
bond acceptor capacity) showed higher activity with the MIC
value of 12.2, 8, and 10.2 ug/mL, respectively, which was
higher than that of the standard PZA that has the MIC value
of 12.5 wg/mL."Y Zulquramin et al. rationally designed and
synthesized a pyrazine carboxamide derivative and assessed
the compounds for their anti-tubercular activity. Compound
13a, containing an electron-withdrawing group, chlorophenyl
group andl3b containing the cycloheptyl substituent,
showed enhanced activity with MICs of each of lesser than
or equal to 6.25 ng/mL, which was 16 times potent than
that of the standard drug, PZA, which has an MIC value of
100 pg/mL."? Suryawanshi et al. designed and synthesized a
series of pyrazine oxadiazole derivatives and screened them
for their anti-tubercular activity. Compounds 14a and 14b
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both have an electro-withdrawing group, Br, and F, while 14¢
contains an electron-donating group, OCH,, and an electron-
withdrawing group, Br, with MIC values of 3.13 pug/mL each,
compared to the standard drug, isoniazid, with an MIC value
of 0.4 ug/mL.5¥ Naiket al. synthesised pyrazine incorporating
a triazole heterocyclic ring by drug design and evaluated the
compounds for their anti-tubercular activity. Compound 15,
containing the electron-withdrawing group trifluoromethyl,
showed the maximum potency among the series and was
found to have the same MIC value as that of PZA, with an
MIC value of 3.12 ug/mL.B*** Shivakumar et al. synthesized
drug design pyrazine carbohydrazide derivatives and
evaluated their anti-tubercular activity. Compounds 16a and
16b contain electron-withdrawing groups, bromo and nitro
groups, whereas compound 17 with the nitrophenyl group
showed greater potency than the standard drug PZA (MIC
value of 3.12ug/mL), with each MIC value of 1.56 pg/mL.5

The compounds’ chemical structures are shown in Figure 5,
and the MIC value with the structural feature is shown in
Table 1.

Ortho-meta-substituted pyrazine derivatives

Dolezal et al. synthesized pyrazine carboxamides substituted
derivatives and tested for their anti-mycobacterial activity.
Compound 18a, containing trifluoromethyl, and compound
18b, containing trifluoromethyl and a tert-butyl group as a
substituent, showed maximum anti-tubercular activity with a
MIC value of 6.25 and 3.13 pg/mL, respectively.’® Dolezal
et al. synthesized pyrazine carboxamide-aryl derivatives
and evaluated anti-tubercular activity. Compound 19a,
containing iodide and a methyl group, and compound 19b,
containing additional tert-butyl and an electron-withdrawing
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Figure 4: Different anti-tuberculosis mechanistic pathways for the pyrazine ring-containing reported drugs

Table 1: MIC values of pyrazine-containing derivatives

Compound code Structural features MIC value Reference

1 Quinoline and pyrazine 0.39 Sriram et al. (2006)

2 Pyrazole and pyrazine 0.78 Hassan et al. (2020)

3 Thiophene and pyrazine 6.25

4 Pyrazoline and pyrazine 3.12

5 1,3,4-oxadiazole and pyrazine 6.25 Das (2015)

6 Morpholine, thiomorpholine, piperazine, and pyrazine 12.2,8and 10.2  Zhou et al. (2017)

7 Cycloheptane and pyrazine 6.25 Zulguramin et al. (2023)
8 1,3,4-oxadiazole and pyrazine 3.13 Suryawanshi et al. (2025)
9 Triazole and pyrazine 3.12 Naik et al. (2024)

10 1,3,4-oxadiazole and pyrazine 1.56 Shivakumar et al. (2025)
11 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and pyrazine 1.56

MIC: Minimum inhibitory concentration
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Figure 5: Compounds containing ortho-substituted pyrazine

group, chlorine, showed four times higher potency with MIC
values of <2 ug/mL and 4 ug/mL, respectively, than that
of the standard drug PZA (MIC value 8 ug/mL).5”® Zitko
et al. synthesized pyrazine carboxamides and evaluated the
compounds for their anti-tubercular activity. Compound 20a
contains electron electron-withdrawing group, chloride, and
an electron-donating group-OH, whereas compound 20b,
containing an electron-withdrawing group -COOH and an
electron-donating group -OH, showed maximum potency
with the MIC value of 1.56 and 3.13 pg/mL, respectively,
whereas the standard drug PZA has a MIC value of 6.25—
12.5 pg/mL.PY Servusova et al. synthesized pyrazine
carboxamide derivatives for their anti-tubercular activity.
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Compound 21a, containing the electron-withdrawing group
chloride, and compound 21b containing the electron-
donating group methyl, showed maximum potency with the
MIC value of 6.25 and 3.13 ug/mL, respectively, against
Mycobacterium kansasii, to which the standard compound
PZA isunsusceptible.[®” Zitko et al. designed and synthesized
pyrazine carboxamide derivatives and their compounds for
their anti-tubercular activity. Compound 22a, containing the
electron-withdrawing group fluoro group, compound 22b
and 22c¢ containing the electron-withdrawing group chloro,
and compound 22d containing the electron-withdrawing
group iodo showed higher potency of each MIC value of
3.13 ug/mL compared to the reference drug PZA with the
MIC value of 12.5 ug/mL.1°"! Jandourek et al. synthesized
pyrazine carbonitrile derivatives and studied the compounds
for their anti-tubercular activity. Compounds 23a and 23b,
containing an electron-withdrawing group, chloride, and 23c,
containing an electron-withdrawing group, trifluoromethyl
group, showed maximum potency with the MIC value of
6.25 ug/Ml against H37Rv TB compared to the standard drug
PZA with the MIC value of 12.5 ug/mL.[** Semelkova et al.
designed and synthesized pyrazine carboxamide derivatives
and incorporated long alkylamino groups, and found that the
compounds containing longer alkylamino chains are more
potent than the substituents with the shorter alkyl chains.
Among the synthesized compounds, compounds 24a, 24b,
and 24¢ showed the maximum potency with each MIC value
of 25 pg/mL compared to the standard drug isoniazid with an
MIC value of 0.1-0.39 ug/mL.1*! Semelkovaet al. synthesized
N-Benzyl pyrazine carboxamide derivative and screened
the compounds for their anti-tubercular activity. Compound
25a, containing the electronegative group methyl group, and
compound 25b, containing the electron-withdrawing group
chlorogroup, showed anti-tubercular activity with the MIC
value of each 12.5 pug/mL compared to the standard drug
isoniazid with an MIC value of 0.2 ug/mL.I*%] Jandourek
et al. designed and synthesized a pyrazine carboxamide
derivative incorporating various substituted benzyl amino
derivatives at the 3-position. Compounds 26a and 26d
contain the electron-withdrawing group trifluoromethyl,
whereas 26b and 26¢, containing the electron-releasing group
methyl and the amino group, has shown better or equal potent
activity with the MIC value of 12.5 ug/mL, 12.5ug/mL,
1.56pg/mL, and 6.25 pg/mL, respectively, compared to the
standard drug PZA with an MIC value of 12.5 ug/mL.1
Shaik et al. designed and synthesized chloropyrazine
carboxamide derivatives incorporating different alkyl
groups containing several electron-donating and electron-
withdrawing groups, along with some derivatives containing
heterocyclic rings. Compound 27a, containing electron-
withdrawing chloro group at ortho and para position in the
phenyl group, showed 16 times improved activity over the
reference compound PZA (MIC value of 50.80 ug/mL)
with an MIC value 25.51 pg/mL of whereas compound 27b
containing electron releasing group 3,4,5-trimethoxyphenyl
group showed 17 times higher potency with MIC value of
23.89 ug/mL.*"! Ramesh e al. designed and synthesized




Table 2: MIC values of pyrazine-containing derivatives

Compound code Structural features MIC value Reference

12 Carboxamide and pyrazine 6.25 and 3.13 Dolezal et al. (2008)

13 Carboxamide and pyrazine <2and 4 Dolezal et al. (2009)

14 Carboxamide and pyrazine 1.56 and 3.13 Zitko et al. (2013)

15 Benzylcarboxamide and pyrazine 6.25 and 3.13 Servusova et al. (2013)
16 Carboxamide and pyrazine 3.13 Zitko et al. (2015)

17 Benzylamine and pyrazine 6.25 Jandourek et al. (2014)
18 Long alkyl group and pyrazine 25 Semelkova et al. (2015)
19 Benzylamine and pyrazine 12.5 Semelkova et al. (2017)
20 Benzylamine and pyrazine 12.5, 1.56, 6.25, and 12.5 Jandourek et al. (2017)
21 Aromatic ketone and pyrazine 25.51 and 23.89 Shaik et al. (2020)

22 Pyridine carboxamide and pyrazine 1.59 Ramesh et al. (2024)

MIC: Minimum inhibitory concentration
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Polycyclic ring incorporation
enhances biological activity

Figure 7: Compound containing a polycyclic ring fused to
pyrazine

fluoro, showed the maximum potency with the MIC value of
1.59 ug/mL, whereas the standard drug used is isoniazid with
the MIC value of 0.1 ug/mL.1! The compounds’ chemical
structures are shown in Figure 6, and the MIC value with the
structural feature is shown in Table 2.

Polycyclic ring fused pyrazine derivatives

Sadykhov et al. designed and synthesised a pyrrole and
quinoxaline hybrid compound that contains thiophene
and N, N-dimethyl ethyl substitution. They evaluated the
compounds for their anti-tubercular activity. Compound
29 showed the highest potency amongst all the synthesised
compounds with an MIC value of 12.5 pg/mL compared
to the standard drug isoniazid with an MIC value
of 0.06 ug/mL.[°*7 The compounds’ chemical structures
are shown in Figure 7, and the MIC value with the structural
feature is shown in Table 3.
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Table 3: MIC values of pyrazine-containing
derivatives

Compound Structural MIC  Reference

code features value
23 Polycyclic ring 12.5 Sadykhov
containing pyrazine et al. (2024)
MIC: Minimum inhibitory concentration
CONCLUSION

The pyrazine nucleus has emerged as a highly promising
class of compounds due to its structural simplicity,
pharmacophoric versatility against M. tuberculosis, for the
resistant strains as well. The SAR studies suggest that the
substitutions of the pyrazine ring with electron-withdrawing
groups or heterocyclic moieties significantly enhance the
anti-tubercular potency, often surpassing the standard
drugs like PZA in terms of their MIC values. The effect
of the various substitutions, such as electron-withdrawing,
electron-releasing groups, and the various heterocyclic rings,
has been compiled in Graph 1 for thorough understanding.
Advances in synthetic methodologies and computational
modelling have further enabled rapid lead optimization and
drug-likeness profiling. Taken together, the SAR evidence
reviewed here indicates that the pyrazine nucleus is not
merely a structural motif but a modifiable platform capable
of addressing emerging resistance mechanisms in TB
therapy.
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