

Targeted Drug Delivery Systems: Bridging Nanotechnology, Precision Medicine, and Clinical Translation

Saahil Singh¹, Nishikant², Abhishek Gaurav², Aditi Yadav¹

¹Department of ???, Jawaharlal Nehru Medical College, Wardha, Maharashtra, India, ²Department of Pharmacology, Jawaharlal Nehru Medical College, Wardha, Maharashtra, India

AQ2

AQ3

Abstract

The targeted drug delivery system marks one of the biggest developments in pharmaceutical sciences since it allows for organ-specific drug localization, controlled release, and, consequently, improved therapeutic efficacy with concomitant decrease in systemic toxicity. A focused approach through passive mechanisms of drug delivery under the control of the enhanced permeability and retention effect or active drug delivery under the control of ligand-receptor interactions is systematically discussed in this review. Different delivery platforms from liposomes, niosomes, polymeric nanoparticles, and hydrogels to biodegradable microspheres and microfluidic-based systems are discussed concerning their design principles, fabrication methods, surface modification strategies, and kinetics of drug release. With applications in cancer, infectious diseases, and neurological disorders, where the breakdown of biological barriers and minimizing the adverse effects are essential, the clinical relevance of these delivery systems is also discussed. Thereafter, this article reviews some of the major challenges to clinical translation of these promising systems, such as toxicity, immunogenicity, biological barriers, scale of manufacture, regulatory pathway, and interpatient variability. Trends of great interest that are being highlighted include responsive smart carriers, theranostic platforms, personalized medicine, and artificial-intelligence-assisted formulation design. Thus, it presents an integrated perspective on the nuances behind targeted drug delivery, the recent advancements, limitations, and future trajectories of therapeutic systems, in an effort to bring to the fore safer and clinically translatable therapeutic systems.

Key words: Active targeting, enhanced permeability and retention effect, nanocarriers, passive targeting, targeted drug delivery

INTRODUCTION

Targeted drug delivery systems have been recognized as a breakthrough in pharmaceutical sciences, which have altogether transformed the manner in which drugs are administered to a patient. Traditional drug delivery systems result in the distribution of the drug throughout the body; drug targeting aims to concentrate the drugs at predetermined loci, thereby ensuring higher drug efficacy while minimizing harmful side effects. This precision in drug targeting enables the delivery of drugs in a controlled and sustained manner, improving patient compliance, reducing the frequency of dosing, and ultimately enhancing the overall therapeutic outcome.^[1] The relevance of drug targeting can well be gauged by its use in dealing with chronic diseases such as cancer, infections, and neurological diseases, where

localization as well as reduced systemic toxicity are highly important.^[2]

The technology for targeted drug delivery is no longer novel, and advances in materials science, nanotechnology, and disease pathophysiology have significantly aided its development.^[1] In earlier days, the focus of drug-delivery technology has essentially been on improving the bioavailability and pharmacokinetics of the therapeutic agent. However, conventional technology has failed to make a significant impact on concerns for site-specificity and

Address for correspondence:

Abhishek Gaurav, Department of Pharmacology,
Jawaharlal Nehru Medical College, Sawangi (Meghe),
Wardha, Maharashtra, India. Phone: 9472944379.
E-mail: abhishekgaurav3949@gmail.com

Received: 07-09-2025

Revised: 24-11-2025

Accepted: 04-12-2025

reducing adverse effects. The seeds for the development of targeted delivery technology were sown at the end of the last century with the development of carriers such as liposomes and polymeric nanoparticles, which enabled the encapsulation of therapeutic agents and their delivery to specific areas of the body or to specific cells. The earlier-mentioned carrier technology has demonstrated the feasibility of delivering therapeutic agents in a more targeted manner by overcoming biological barriers, such as enzyme-mediated degradation or the first-pass metabolism.^[3,4]

The primary targets for targeted drug delivery systems were initially focused on enhancing the solubility and shelf life of drugs, aided by controlled release mechanisms and increased localization in specific sites, mainly targeting tumors for anticancer drugs.^[5] However, targeting specific sites for specific diseases has become more focused. It now encompasses site-specific targeting for numerous other diseases, using both passive targeting principles, such as the enhanced permeability and retention (EPR) effect, and ligand-receptor-mediated active targeting. The shift in technology from passive targeting to active targeting has been a defining destination for this technology, which improves cellular uptake and specificity.^[1,5]

As a result of recent advances in target drug delivery systems, sophisticated carriers exist that show potential for responsive and on-demand drug delivery through external stimuli, such as pH, temperature, or enzyme activity. Smart drug delivery systems have therefore rendered the drug delivery highly specific, safe, and effective.^[6] They have also catalyzed the use of target ligands, such as antibodies, peptides, or low-molecular-weight molecules, that specifically target the cell surface markers of the desired target cells, further advancing active target drug delivery systems. These rely on the differences between normal and pathological cells in order to enhance their selective uptake of drugs.^[6,7]

Targeted drug delivery systems offer therapeutic advantages, as they are highly effective with minimal side effects and lower dosages compared to standard dosage forms. However, their applications in everyday medical practice face many challenges and complications.^[8] Indeed, designing an ideal drug-carrier system, such as nanoparticles, liposomes, dendrimers, or smart polymers, involves many considerations, such as biocompatibility and good stability, and the precision with which the drug is delivered to its target sites, notwithstanding the fact that such challenges remain unresolved concerning toxicity, immunogenicity, and complexity of manufacture, in addition to the associated high cost. Moreover, another major limitation arises from the biological barriers posed by certain protective mechanisms, which can localize drug delivery, such as the blood-brain barrier (BBB) or the tumor microenvironment.^[9] The goal of the research effort, therefore, over the recent years has gone toward an interdisciplinary or system design approach to these challenges; introduction of new targeted molecules,

dual or double-targeting modalities, and advanced fabrication designs further ensure the next-generation drug delivery devices are safe, cheap, and very effective.^[5] In short, the ultimate goal extends beyond precision targeting within diseased tissue to a more deliberate emphasis on enhancing patient outcomes while expanding the therapeutic spectrum through innovative advancements in drug target technology applications.^[10,11]

The objective of this review is to provide a comprehensive overview of the mechanisms involved in targeted drug delivery, the nature of current delivery systems, and the future technologies that are shaping this field. The review also aims to compile the latest innovations in carrier preparation, delivery kinetics, and applications across various therapeutic areas, including cancer, infectious diseases, and neurological disorders. Furthermore, this review aims to address the challenges and limitations associated with targeted delivery systems, including issues of immunogenicity, toxicity, scalability, and regulatory concerns.

The purpose of this review is to consolidate the existing literature and identify trends and gaps, with the intention of guiding researchers, clinicians, and pharmaceutical companies on how to effectively design next-generation targeted drug-delivery systems. The end goal is the advancement of personalized medicine.

Mechanisms of targeted drug delivery

Targeting drug delivery systems can be classified into two main categories: passive and active targeting strategies.^[2] Passive targeting leverages the natural physiological properties of tissues, particularly the permeability and retention (EPR) properties, which are prevalent in tumor tissues and also in inflamed tissues, due to leakage of blood vessels and sparse lymphatic drainage in these tissues, where large molecules as well as nanoparticles are selectively taken up, resulting in a concentrated drug delivery without employing any target-specific moiety.^[2,5] On the other hand, active targeting requires the conjugation of drug delivery systems with target-specific molecules, such as antibodies, peptides, aptamers, or small molecules, which selectively target receptors/antigens overexpressed on target cells. This enables the achievement of target-specific drug delivery through receptor-ligand interactions.^[3,6]

There are several barriers to the path that binds drugs to their targets. These barriers include degradation in the bloodstream, high renal excretion, opsonization, and the action of natural barriers such as the BBB or the stroma in tumors.^[4,10] Targeting moieties are crucial for the ability to cross cellular barriers. This occurs because they induce receptors to mediate endocytosis, resulting in a high intracellular delivery of drugs. This concept focuses on engineering target moieties to direct drugs across cellular barriers to their target sites.^[2,4]

Types of targeted delivery systems

Novel nanocarriers are a type of modern targeted delivery vehicle for drug delivery, ranging from liposomes, niosomes, polymeric nanoparticles, to dendrimers and solid lipid nanoparticles.^[15] They are biocompatible and non-toxic and trap hydrophilic and hydrophobic drugs in spherical vesicles formed by phospholipid bilayers. Niosomes, which are more stable and cheaper than liposomes, are also similar to liposomes but are exclusively made of non-ionic surfactants. The polymeric nanoparticles in question are made from biodegradable polymers such as poly(lactide-co-glycolide

acid) (PLGA) or chitosan. Control of drug release and surface modification for active targeting is possible.^[15,16] The polymeric nanoparticles are composed of biodegradable polymers, such as PLGA or chitosan. Control of the drug release and surface modification for active targeting are possible.^[17]

These are typically hydrogels and stimulus-responsive carriers that are of great interest because they respond to environmental parameters, such as pH and temperature, or even enzymatic activity, allowing for the precise release of drugs in pathological conditions and thus achieving optimal

AQ5

Table 1: Targeting moieties in drug delivery – characteristics and functions

Targeting moiety	Type	Mechanism of targeting	Common targets	References
Antibodies	Proteins	High specificity binding to antigens	Tumor cell surface receptors	[12,13]
Peptides	Short amino acid chains	Bind specific receptors or enzymes	Integrins, growth factor receptors	[12,14]
Aptamers	Single-stranded DNA/RNA	Nucleic acid-based binding to targets	Surface markers, proteins	[12]
Small Molecules	Synthetic ligands	Bind receptors or enzymes	Folate receptor, transferrin receptor	[12]
Carbohydrates	Polysaccharides	Target lectin receptors on cells	Hepatic targeting	[13]

AQ5

Table 2: Types of targeted drug delivery carriers

Carrier type	Key features	Advantages	Applications	References
Liposomes	Phospholipid bilayers, biocompatible	Encapsulate hydrophilic/hydrophobic drugs, reduce toxicity	Cancer, Infectious diseases	[21]
Niosomes	Non-ionic surfactant vesicles	Improved stability over liposomes	Cancer therapy, gene delivery	[22]
Polymeric Nanoparticles	Biodegradable polymers (PLGA, chitosan)	Controlled release, surface modifiable	Tumor therapy, vaccines	[21,23]
Hydrogels	3D polymer networks, stimuli-responsive	Responsive drug release, local delivery	Wound healing, pH-sensitive drug release	[24]
Microfluidic-based Systems	Precise control of size/morphology	Reproducibility, scalable fabrication	Customized nano systems	[25]
Biodegradable Microspheres	Sustain drug release via degradation	Reduced dosing frequency, minimal toxicity	Chronic diseases, vaccines	[26]

AQ5

Table 3: Challenges in targeted drug delivery systems and current solutions

Challenge	Description	Potential solutions/strategies	References
Safety and toxicity	Toxicity, immunogenicity, and long-term effects	Biocompatible materials, thorough pre-clinical tests	[37,38]
Biological barriers	Blood-brain barrier, tumor microenvironment challenges	Surface modification, stimuli-responsive carriers	[4,35]
Manufacturing scale-up	Maintaining batch consistency and quality	Microfluidics, scalable synthesis techniques	[17,28]
Regulatory hurdles	Complex approval processes and a lack of standards	Standardization and regulatory framework development	[6,39]
Patient variability	Inter-patient differences affecting drug response	Personalized medicine, biomarker-guided therapy	[6,10]

therapeutic efficacy with minimal systemic exposure.^[18] They open up a possibility of using microfluidic-based system platforms for developing drug carriers with controlled sizes and morphologies, thus improving the reproducibility and scalability in production processes. Biodegradable particles and microspheres sustain the concentration of the drug over time, minimizing the frequency of dosing and thereby maximizing patient compliance and decreasing the chronic toxicity of the treatment.^[19,20]

Design and fabrication of carriers

The material selected is crucial in the design of the carrier, as it affects biocompatibility, biodegradability, and stability, which are crucial for ensuring safety and efficiency.^[27] Natural polymers, such as alginate, gelatin, and hyaluronic acid, are favored because they are low in immunogenicity. Synthetic polymers have highly tunable mechanical and chemical properties.^[27,28] Various methods of fabrication, including emulsification, nanoprecipitation, spray drying, and solvent evaporation. Other factors that affect are particle size, drug loading efficiency, and release kinetics.^[28]

Surface modification involves the conjugation of polyethylene glycol to prolong circulation time and reduce immune clearance, in addition to the conjugation of targeting ligands for enhanced specificity. These modifications optimize pharmacokinetics and biodistribution, thereby customizing the therapeutic profile for the desired application.^[29,30]

Controlled drug release and kinetics

Controlled drug release will be the most relevant element for the success of targeted delivery systems. This means prolonged exposure time of the drug at the target site, resulting in less frequent dosing. Triggered release systems depend on internal or external stimuli, such as pH differences in the tumor environment, micro-destructive or temperature changes, enzyme activity, or even external magnetic fields, for release specifically at the pathological site.^[18,31]

The drug release profile should be decided carefully to have treated concentrations of drugs in the therapeutic window while avoiding subtherapeutic levels and toxicity. The mathematical modeling of release kinetics can be used to predict *in vivo* behavior and optimize formulation parameters accordingly.^[32]

Applications in disease treatment

Targeted therapy has significantly impacted the treatment of numerous diseases. Cancer therapy is facilitated by avoiding multidrug resistance, which targeted systems will help achieve directly in tumor cells, minimizing systemic toxicity.^[33] Tumor recognition has been improved with the addition of cancer-specific ligands through ligand-mediated

endocytosis and stimulus-triggered carriers responding to the special characteristics of the tumor microenvironments.^[33,34]

Targeted delivery of antimicrobials to infectious diseases increases their bioavailability and efficacy against drug-resistant pathogens, while minimizing side effects. For neurological and cardiovascular disorders, the biggest challenge is to overcome biological barriers such as the BBB, which targeted carriers have made possible in facilitating drug transport across this barrier, thus opening new avenues for many such diseases, including Alzheimer's and stroke.^[35,36]

CHALLENGES AND LIMITATIONS

Despite remarkable advances in targeted drug delivery systems, major challenges still need to be overcome for the clinical translation and routine use of targeted drug delivery systems.^[37] Among the safety aspects, the toxicity and immunogenicity of nanocarriers, such as liposomes, dendrimers, and polymeric nanoparticles, require rigorous evaluation through pre-clinical testing aimed at biocompatibility with minimal adverse immune response.^[37] Newly arising nanomaterials, such as metallic and carbon-based nanoparticles, pose an additional layer of long-term toxicity ponderance due to the limited understanding of their biodistribution and clearance.^[38] The most challenging biological barriers remain those that penetrate the BBB and infiltrate tumor microenvironments. Both pose significant challenges to effective delivery, resulting in diminished drug accumulation.^[35] Many nanocarriers, besides, are swept away rapidly by the immune system, reducing their circulation time and therapeutic efficacy.^[4]

Manufacturing difficulties still exist, particularly for scaling up from laboratory to industrial levels for nanoparticle synthesis, while maintaining the unchanged particle size, polydispersity, and surface chemistry.^[28] These are crucially important with regard to safety, efficacy, and regulatory approval. Multi-faced designs of numerous targeted delivery systems enhance production costs and complicate quality assurance.^[17] The other side is bureaucratic pathways hindered by the lack of standardized procedures and confusion regarding nanomedicine.^[39] The interdependence of biological variation between patients and the predictability of treatment response have limited their wide application and required the establishment of personalized strategies.^[6] A coordinated, multidisciplinary research and development effort is required to address these interrelationships.^[10,37]

FUTURE PROSPECTS AND EMERGING TRENDS

The powerful improvements in smart drug delivery systems have synthesized endogenous stimuli, such as pH, redox

gradients, or enzyme activity, that provide spatiotemporal control of drug release and thus enhance its efficacy and safety.^[31,35] With programmable artificial DNA nanostructures, quantum dots, and extracellular vesicles, one opens new avenues to ultra-specific targeting in conjunction with diagnostic-therapeutic (theragnostic) applications.^[40] An innovative approach is personalized medicine, which integrates genomics, proteomics, and biomarker profiling with the intent of using drug carriers and payloads tailored to individual patient differences, resulting in maximized effects.^[41] Significantly, artificial intelligence and machine learning tools will greatly enhance and accelerate the design and optimization processes involved in developing nanocarriers and predicting clinical outcomes, thereby reducing the development time. Future paradigms in therapeutics would probably comprise multifunctional platforms multiplexed for targeting, imaging, and crucial in bringing these next-generation systems into widespread clinical use and into the hands of patients, immune modulation.^[40] Advances in scalable manufacturing will be crucial in bringing these next-generation systems into widespread clinical use and into the hands of patients.^[17] All these converging innovations indicate a future in which targeted drug delivery systems will become safer, smarter, and highly effective tools in individualized therapy.^[31,41]

CONCLUSION

Targeted drug delivery systems have been the hallmark of modern research in pharmaceutical sciences. They have provided a rational mechanism to boost therapeutic efficacy and, at the same time, curtail overall systemic toxicity. Complex carrier platforms such as liposomes, polymeric nanoparticles, hydrogels, and stimulus-responsive systems combined with active and passive targeting mechanisms have accounted for efficient localization and controlled release of drugs. Cancer, infectious diseases, and neurological disorders are typical evidence of the efficacy of such systems when compared with standard therapies, which mainly suffer from specificity constraints and biological barriers. There are, nevertheless, several challenges to surmount, including toxicity and immunogenicity of the nanocarriers, their barrier penetrability, scaling up of the manufacture, uncertainty in regulation, and inter-patient variations in response to treatment. Bridging such barriers calls for interdisciplinary collaboration, standard evaluation frameworks, and fabrication technologies on a larger scale. Future evolution in targeted drug delivery systems would occur in concert with personalized medicine, biomarker-guided targeting, and artificial intelligence-assisted design to enhance translation into the clinic. The eventual successful development of such targeted drug delivery systems is, however, contingent upon striking a balance between the innovation of technologies and their safety, practicality, and empirical improvement in patient outcomes.

REFERENCES

1. Ismail Y, Kishore S. Recent advances in targeted drug delivery systems. *J Pharma Insights Res* 2025;3:31-42.
2. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. *Adv Enzyme Regul* 2001;41:189-207.
3. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. *Science* 2004;303:1818-22.
4. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. *Mol Pharm* 2008;5:496-504.
5. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. *Adv Drug Deliv Rev* 2011;63:136-51.
6. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. *Adv Drug Deliv Rev* 2014;66:2-25.
7. Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, et al. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy. *J Nanobiotechnology* 2023;21:339.
8. Prabahar K, Alanazi Z, Qushawy M. Targeted drug delivery system: Advantages, carriers and strategies. *Indian J Pharm Educ Res* 2021;55:346-52.
9. Myerson JW, Brenner JS, Greineder CF, Muzykantov VR. Systems approaches to design of targeted therapeutic delivery. *Wiley Interdiscip Rev Syst Biol Med* 2015;7:253-65.
10. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. *Nat Rev Drug Discov* 2014;13:813-27.
11. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted drug delivery - from magic bullet to nanomedicine: Principles, challenges, and future perspectives. *J Multidiscip Healthc* 2021;14:1711-24.
12. Sun J, Rosli AB, Daud A. Efficiency analysis of listed pharmaceutical companies in China: A method combining three-stage DEA with undesirable output, PCA, and tobit regression. *PLoS One* 2025;20:e0329767.
13. Khanam N, Alam MI, Yusuf Ali QM, Siddiqui AU. A review on optimization of drug delivery system with experimental designs. *Int J Appl Pharm* 2018;10:7-12.
14. Esteves AM, Bernardoni B, Brown S, Farrar J, Filiberto DM, Kopp BJ, et al. Major publications in the critical care pharmacotherapy literature: 2024. *J Crit Care* 2025;90:155177.
15. Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. *Int J Nanomedicine* 2006;1:297-315.
16. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. *Acta Pharm Sin B* 2011;1:208-19.

- AQ4**
17. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. *Colloids Surf B Biointerfaces* 2010;75:1-18.
 18. Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. *Polymer* 2008;49:1993-2007.
 19. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. *Nature* 2014;507:181-9.
 20. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. *Biomaterials* 2000;21:2475-90.
 21. Panneerselvam GS, Kah Yee C, Farrukh MJ, Yuda A, Hermansyah A, Mohd Asmani MF, et al. Impact of pharmacist-led medication review among hemodialysis patients: A systematic review. *J Pharm Policy Pract* 2025;18:2446912.
 22. El Hajj MS, Asiri R, Husband A, Todd A. Medication errors in community pharmacies: A systematic review of the international literature. *PLoS One* 2025;20:e0322392.
 23. **Aminullah Y, Naftali Z, Santosa D, Prajoko YW, Azam M, Susanto H, et al.** Boosting antioxidant defense: The effect of astaxanthin on superoxidase dismutase and malondialdehyde reduction in patients with head and neck cancer receiving cisplatin chemotherapy. *Asian Pac J Cancer Prev* 2024;25:3741-8.
 24. Gibson CM, Kastelein JJ, Phillips AT, Aylward PE, Yee MK, Tendera M, et al. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): A phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. *Am Heart J* 2021;231:121-7.
 25. **Mahadik RA, Redasani DV, Jadhav DP, Bhagat PD.** Review on a oral mucoadhesive drug delivery system. *Asian J Pharm Res Dev* 2023;11:201-5.
 26. Jawhar DS, Khan AH, Alam K. Systematic review and meta-analysis protocol of impact of pharmacist-led antibiotic stewardship audit-feedback intervention. *MethodsX* 2025;14:103399.
 27. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-a versatile semi-synthetic polymer in biomedical applications. *Prog Polym Sci* 2011;36:981-1014.
 28. Danaei M, Dehghankhord M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. *Pharmaceutics* 2018;10:57.
 29. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. *Nanomedicine (Lond)* 2011;6:715-28.
 30. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. *Drug Discov Today* 2005;10:1451-8.
 31. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. *Theranostics* 2020;10:4557-88.
 32. Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. *Adv Drug Deliv Rev* 2001;48:229-47.
 33. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. *Int J Nanomedicine* 2014;9:467-83.
 34. Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. *J Control Release* 2011;153:198-205.
 35. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. *J Control Release* 2016;235:34-47.
 36. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. *Chem Rev* 2016;116:2602-63.
 37. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. *Exp Mol Pathol* 2009;86:215-23.
 38. Dhawan A, Sharma V. Toxicity assessment of nanomaterials: Methods and challenges. *Anal Bioanal Chem* 2010;398:589-605.
 39. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. *Nanomedicine* 2013;9:1-14.
 40. Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. *Science* 2012;335:831-4.
 41. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, et al. Accelerating the translation of nanomaterials in biomedicine. *ACS Nano* 2015;9:6644-54.

Source of Support: Nil. **Conflicts of Interest:** None declared.

Author Queries???

- AQ1:** Kindly provide running title
AQ2: Kindly provide author full name
AQ3: Kindly provide department
AQ4: Kindly check edit made
AQ5: Kindly cite tables 1-3 in the text part