Advances in novel parentral drug delivery systems
Main Article Content
Abstract
number of injection throughout the drug therapy period will be truly advantageous not only in terms of compliance, but also to improve the quality of the therapy. Such reduction in frequency of drug dosing is achieved by the use of specific formulation technologies that guarantee the release of the active drug substance in a slow and predictable manner. The development of new injectable drug delivery system has received considerable attention over the past few years. A number of technological advances have been made in the area of parenteral drug delivery leading to the development of sophisticated systems that allow drug targeting and the sustained or controlled release of parenteral medicines.
Downloads
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.
References
Kapoor S. An overview on advanced parenteral drug delivery system
in clinical disease management. Pharmainfo Net. 2007.
Panayiotis PC, Mahesh VC, Robert S. Advances in lipid nanodispersions
for parenteral drug delivery and targetting. Science 2008;60:757-67.
Collins GL, Feichtinger N, Wärnheim T. Are lipid emulsions the drug
delivery solution?. Mod Drug Discov 2000;3:44-8.
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral
drug delivery. Adv Drug Deliv Rev 2004;56:1257-72.
Attama AA, Reichl S. Diclofenac sodium delivery to the eye: in vitro
evaluation of novel solid lipid nanoparticle formulation using human
cornea construct. Int J Pharm 2008;355:307-13.
Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, et al. Solid lipid
nanoparticles for pulmonary delivery of insulin. Int J Pharm
;356:333-44.
Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of
actives. Eur J Pharm Biopharm 2008;71:161-72.
Wong HL. Solid lipid nanoparticles for antitumor drug delivery. In:
Amiji M, editor. Nanotechnology for Cancer Therapy. USA: CRC Press;
p. 714-76.
Shenoy VS, Vijay IK, Murthy RSR. Tumour targeting: biological factors
and formulation advances in injectable lipid nanoparticles. J Pharm
Pharmacol 2005;57:411-22.
Zhang X, Miao J, Yuan H. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 2008;361:239-44.
Tabatt K, Sameti M, Olbrich C, Müller RH, Lehr CM. Effect of cationic
lipid and matrix lipid composition on solid lipid nanoparticle-mediated
gene transfer. Eur J Pharm Biopharm 2004;57:55-162.
Lu W, He LC, Wang CH, Li YH, Zhang SQ. The Use of Solid Lipid
Nanoparticles to Target a Lipophilic Molecule to the Liver after
Intravenous Administration to Mice. Int J Biological Macromol
;43:320-4.
Müller RH, Keck CM. Drug delivery to the brain-realization by novel
drug carriers. J Nanosci Nanotechnol 2004;4:471-83.
Panyam J, Chavanpatil M. Lipid-derived nanoparticles for brain-targeted
drug delivery. PCT 2008:WO2008024753.
Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007;59:935-40.
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid
nanoparticles in brain targeting, J Control Release 2008;127:97-109.
Zhang W, Liu J, Li S, Chen M, Liu H. Preparation and evaluation of stealth Tashinone IIA-loaded solid lipid nanoparticles: influence of Poloxamer 188 coating on phagocytic uptake. J Microencapsul 2008;25:203-9.
Liu W, He Z, Liang J. Preparation and characterization of novel
fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots
loaded solid lipid nanoparticles. J Biomed Mater Res. 2008;84:1018-25.
Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and
polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev
;59:505-21.
Ye J, Wang Q, Zhou X, Zhang N. Injectable actarit-loaded solid lipid
nanoparticles as passive targeting therapeutic agents for rheumatoid
arthritis. Int J Pharm 2008;352:273-9.
Zhang W, Liu J, Li S, Chen M, Liu H. Preparation and evaluation of stealth Tashinone IIA-loaded solid lipid nanoparticles: influence of Poloxamer 188 coating on phagocytic uptake. J Microencapsul 2008;25:203-09.
Dianzani C, Cavalli R, Zara GP, Gallicchio M, Lombardi G, Gasco MR,
et al. Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion
of human neutrophils to endothelial cells. Br J Pharmacol 2006;148:
-56.
Weyhers H, Ehlers S, Hahn H, Souto EB, Müller RH. Solid lipid
nanoparticles (SLN) – effects of lipid composition on in vitro
degradation and in vivo toxicity. Pharmazie 2006;61:539-44.
Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming
parenteral drug delivery systems: an overview. Eur J Pharm Biopharm
;58:445-55.
Moreau M, Abdellaoui KS, Schneider, Boisramc B, Gurny R. Controlled
delivery of metoclopramide using an injectable semi-solid poly(ortho
ester) for veterinary application. Int J Pharm 2002;248:31-7.
Dunn R. The Atrigel Drug Delivery System. In: Drugs and the
Pharmaceutical Sciences. New York, MA: Dekker Series; 2003. p. 647-55.
Gentner G. Biodegradable block copolymers for delivery of proteins
and water-insoluble drugs. J Control Release 2001;72:203-15.
Murdan S. Organogels in drug delivery. Expert Opin Drug Deliv
;2:489-505.
Chow HF, Zhang J, Lo CM. Improving the gelation properties of
,5-diaminobenzoate-based organogelators in aromatic solvents with
additional aromatic-containing pendants. Tetrahedron 2007;63:363-73.
Anda V, Leroux JC. Organogels and their use in drug delivery — A
review. J Contro Release 2007;125:179-92.
Rossi J. Principles in the development of intravenous lipid emulsions.
In: Wasan K. editor. Role of Lipid Excipients in Modifying Oral and
Parenteral Drug Delivery. Hoboken, New Jersey: Wiley-Interscience;
p. 88-123.
Torchilin VP. Lipid-based parenteral drug delivery systems: biological
implications. In: Wasan K, editor. Role of Lipid Excipients in Modifying
Oral and Parenteral Drug Delivery. Hoboken, New Jersey: Wiley-
Interscience; 2007. p. 48-87.
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of
nanoemulsions. Adv. Colloid Interface Sci 2004;109:303-18.
Rabinow BE. Nanosuspensions in drug delivery. Nature Rev 2004;3:
-96.
Sarker DK. Engineering of nanoemulsions for drug delivery. Cur Drug
Deliv 2005;2:297-310.
Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A,
et al. Formulation development and optimization using nanoemulsion
technique: a technical note. AAPS Pharm Sci Tech 2007;8:28.
Rons R, Carrera I, Caelles J, Rouch J, Panizza P. Formation and properties of miniemulsions formed by microemulsions dilution. Adv Colloid
Interface Sci 2003;106:129-43.
Rabinow B, Kipp J, Papadopoulos P, Wong J, Glosson J, Gass J, et al.
Itraconazole IV nanosuspension enhances efficacy through altered
pharmacokinetics in the rat. Int J Pharm 2007;339:251-60.
Moschwitzer J, Muller RH. New method for the effective production of
ultrafine drug nanocrystals. J Nanosci Nanotechnol 2006;6:3145-53.
Mouton JW, Van PA, Beule K, Van VA, Donnelly JP, Soons PA.
Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy
subjects after single and multiple doses of a novel formulation.
Antimicrob. Agents Chemother 2006;50:4096-102.
Patel RP. Niosomes: An Unique Drug Delivery System. Pharmainfo.net.
Shahiwala A, Misra AN. Studies in topical application of niosomally
entrapped nimesulide. J Pharm Pharmaceu Sci 2002;5:220-5.
Tamizharasi S, Dubey A, Rathi V, Rathi JS. Development and
characterization of niosomal drug delivery of Gliclazide. J Young Pharm
;1:205-09.
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems
for cancer targeted drug delivery. Pharm. Res 2007;24:1029-46.
Doijad RC, Manvi FV, Swati S, Rony MS. Niosomal drug delivery
of Cisplatin: Development and characterization. Indian Drugs
;45:713-8.
Ismail AA, Sanaa A, Gizawy E, Fouda MA, Donia AM. Influence of a
niosomal formulation on the oral bioavailability of acyclovir in rabbits.
AAPS PharmSci Tech 2007;8:1-7.
Roopa K, Mamatha GC, Subramanya G, Udupa N. Preparation,
characterization and tissue disposition of niosomes containing
Isoniazid. Rasayan J Chem 2008;1:224-7.
Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm
Res 2007;24:1-16.
Zamboni WC. Liposomal, nanoparticle and conjugated formulation of
anticancer agents. Clin Cancer Res 2005;11:8230-34.
Mamot C, Drummond DC, Hong K, Kirlotin DB, Park JW. Liposome
based approaches to overcome anticancer drug resistance. Drug Resist
Update 2003;6:271-9.
Pastorino F, Brignole C, Marimpietri D. Doxorubicin-loaded Fab’
fragments of anti-disialoganglioside immunoliposomes selectively
inhibit the growth and dissemination of human neuroblastoma in nude
mice. Cancer Res 2003;63:86-92.
Brouckaert P, Takahashi N, Van Tiel ST. Tumor necrosis factor-a
augmented tumor response in B16BL6 melanoma-bearing mice treated
with stealth liposomal doxorubicin (Doxil) correlates with altered Doxil
pharmacokinetics. Int J Cancer 2004;109:442–8.
Straubinger RM, Arnold RD, Zhou R. Antivascular and antitumor activities
of liposome-associated drugs. Anticancer Res 2004;24:397-404.
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh
B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate
for the targeted delivery of rivastigmine in to the brain to treat
Alzheimer’s disease. Brain Res 2008;1200:159-68.
Rathod S, Deshpanden SG. Design and evaluation of liposomal
formulation of pilocarpine nitrate. In J Pharm Sci 2010;72:155-60.
Samad A, Sultana Y, Aqil M. Liposomal Drug Delivery Systems: An update
review. Curr Drug Deliv 2007;4:297-305.
www.azonano.com (Parenteral Drug Delivery III: Novel Parenteral
Products, Devices, and Insulin).