Significance of nanotechnology in medical sciences
Main Article Content
Abstract
range. Two main approaches are used in nanotechnology. In the “bottom-up†approach, materials and devices are built from molecular components, which assemble themselves chemically by principles of molecular recognition. In the “top-down†approach, nano-objects are constructed from larger entities without atomic-level control. In addition, as the need for the development of new medicines is pressing, and given the inherent nanoscale functions of the biological components of living cells, nanotechnology has been applied to diverse medical fields such as oncology, cardiovascular medicine, and in treatment
of other chronic diseases. Indeed, nanotechnology is being used to refine discovery of biomarkers, molecular diagnostics, and drug discovery and drug delivery, which could be applicable to management of these patients. In this review, we will focus upon significance of nanotechnology in medical sciences, as well as the plausible side effects related to their use.
Downloads
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.
References
Jain KK. Role of nanobiotechnology in developing personalized
medicine for cancer. Technol Cancer Res Treat 2005a;4:645-50.
Jain KK. The role of nanobiotechnology in drug discovery. Drug Discov
Today 2005b;10:1435-42.
Jain KK. Role of nanobiotechnology in developing personalized
medicine for cancer. Technol Cancer Res Treat 2005a;4:645-50.
Service RF. Nanotoxicology: Nanotechnology grows up. Science
;304:1732-4.
Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J,
Ausman K, et al. Principles for characterizing the potential human
health effects from exposure to nanomaterials: Elements of a screening
strategy. Part Fibre Toxicol 2005a;2:8.
Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An
emerging discipline evolving from studies of ultrafine particles. Environ
Health Perspect 2005b;113:823-39.
Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR,
Gandelsman VZ, et al. Exposure to carbon nanotube material:
Assessment of nanotube cytotoxicity using human keratinocyte cells.
J Toxicol Environ Health A 2003;66:1909-26.
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of
single-wall carbon nanotubes in mice 7 and 90 days after intratracheal
instillation. Toxicol Sci 2004;77:126-34.
Kipen HM, Laskin DL. Smaller is not always better: Nanotechnology
yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 2005;289:
L696-7.
Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M,
Malinski T, et al. Nanoparticle-induced platelet aggregation and vascular
thrombosis. Br J Pharmacol 2005;146:882-93.
Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006;163:109-20.
Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: A review of their properties in relation to pulmonary
toxicology and workplace safety. Toxicol Sci 2006;92:5-22.
Hussain SM, Javorina A, Schrand AM, Duhart H, Ali SF, Schlager JJ.
The interaction of manganese nanoparticles with PC-12 cells induces
dopamine depletion. Toxicol Sci 2006;92:456-63.
Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal
encapsulated anti-cancer drugs. Anticancer Drugs 2005;16:691-707.
Moghimi SM, Szebeni J. Stealth liposomes and long circulating
nanoparticles: Critical issues in pharmacokinetics, opsonization and
protein-binding properties. Prog Lipid Res 2003;42:463-78.
Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug
Deliv 2005;2:297-310.
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on
chitosan-based micro- and nanoparticles in drug delivery. J Control
Release 2004;100:5-28.
Lee LJ. Polymer nano-engineering for biomedical applications. Ann
Biomed Eng 2006;34:75-88.
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydratestabilized
ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev
Ind Pharm 2000;26:459-63.
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide
nanoparticles for biomedical applications. Biomaterials 2005;26:
-4021.
Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al.
Metal nanoshells. Ann Biomed Eng 2006;34:15-22.
Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: An attractive
tool for biological applications. Eur J Med Chem 2003;38:913-23.
Pagona G, Tagmatarchis N. Carbon nanotubes: Materials for medicinal
chemistry and biotechnological applications. Curr Med Chem
;13:1789-98.
Weng J, Ren J. Luminescent quantum dots: A very attractive and
promising tool in biomedicine. Curr Med Chem 2006;13:897-909.
Geho DH, Lahar N, Ferrari M, Petricoin EF, Liotta LA. Opportunities
for nanotechnology-based innovation in tissue proteomics. Biomed
Microdevices 2004;6:231-9.
Bhalgat MK, Haugland RP, Pollack JS, Swan S, Haugland RP. Green- and
red-fluorescent nanospheres for the detection of cell surface receptors
by flow cytometry. J Immunol Met 1998;219:57-68.
Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for
the ultrasensitive detection of proteins. Science 2003;301:1884-6.
Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for
molecular imaging and therapy. Curr Probl Cardiol 2003;28:625-53.
Wickline SA, Lanza GM. Nanotechnology for molecular imaging and
targeted therapy. Circulation 2003;107:1092-5.
Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, et al.
Novel MRI contrast agent for molecular imaging of fibrin: implications
for detecting vulnerable plaques. Circulation 2001;104:1280-5.
Schmitz SA, Winterhalter S, Schiffler S, Gust R, Wagner S, Kresse M, et al.
USPIO-enhanced direct MR imaging of thrombus: Preclinical evaluation
in rabbits. Radiology 2001;221:237-43.
Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, et al.
Clinically applicable labeling of mammalian and stem cells by combining
superparamagnetic iron oxides and transfection agents. Radiology
;228:480-7.
Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ,
Pittenger MF, et al. In vivo magnetic resonance imaging of mesenchymal
stem cells in myocardial infarction. Circulation 2003;107:2290-3.
Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer
treatment. Curr Drug Deliv 2005;2:369-81.
Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles:
Preparation, physicochemical characterization and in vitro anti-tumoral
activity. J Control Release 2002;83:273-86.
Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate
carrier of fluorouracil. Int J Pharm 2003;257:111-24.
Gnad-Vogt SU, Hofheinz RD, Saussele S, Kreil S, Willer A, Willeke F,
et al. Pegylated liposomal doxorubicin and mitomycin C in combination
with infusional 5-fluorouracil and sodium folinic acid in the treatment
of advanced gastric cancer: Results of a phase II trial. Anticancer Drugs
;16:435-40.
Foster N, Hirst BH. Exploiting receptor biology for oral vaccination
with biodegradable particulates. Adv Drug Deliv Rev 2005;57:
-50.
Pope CA. Particulate air pollution, C-reactive protein, and cardiac risk.
Eur Heart J 2001;22:1149-50.
Peters A, Pope CA 3rd. Cardiopulmonary mortality and air pollution.
Lancet 2002;360:1184-5.
Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al.
Air pollution and cardiovascular disease: A statement for healthcare
professionals from the expert panel on population and prevention science of the American heart association. Circulation 2004;109:2655-71.
Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution
control on death rates in Dublin, Ireland: An intervention study. Lancet
;360:1210-4.
Donaldson K, Tran L, Jimenez L, Duffin R, Newby D, Mills N, et al.
Combustion-derived nanoparticles: A review of their toxicology
following inhalation exposure. Part Fibre Toxicol 2005;2:10.
Schins RP, McAlinden A, MacNee W, Jimenez LA, Ross JA, Guy K, et al.
Persistent depletion of I kappa B alpha and interleukin-8 expression in
human pulmonary epithelial cells exposed to quartz particles. Toxicol
Appl Pharmacol 2000;167:107-17.
Yang HM, Ma JY, Castranova V, Ma JK. Effects of diesel exhaust particles
on the release of interleukin-1 and tumor necrosis factoralpha from rat
alveolar macrophages. Exp Lung Res 1997;23:269-84.
Steerenberg PA, Zonnenberg JA, Dormans JA, Joon PN, Wouters IM, van Bree L, et al. Diesel exhaust particles induced release of interleukin 6
and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro.
Exp Lung Res 1998;24:85-100.
Salvi SS, Nordenhall C, Blomberg A, Rudell B, Pourazar J, Kelly FJ,
et al. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha
production in healthy human airways. Am J Respir Crit Care Med
;161:550-7.
Eerikainen H, Watanabe W, Kauppinen EI, Ahonen PP. Aerosol flow
reactor method for synthesis of drug nanoparticles. Eur J Pharm
Biopharm 2003;55:357-60.
Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-
dependent proinflammatory effects of ultrafine polystyrene particles:
A role for surface area and oxidative stress in the enhanced activity of
ultrafines. Toxicol Appl Pharmacol 2001;175:191-9.
Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I,
et al. Pulmonary and systemic effects of short-term inhalation exposure
to ultrafine carbon black particles. Toxicol Appl Pharmacol 2004;195:
-44.
Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, et al.
Investigation of the proinflammatory potential of biodegradable
nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol
;215:100-8.
Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P,
et al. Calcium and ROS-mediated activation of transcription factors
and TNF-alpha cytokine gene expression in macrophages exposed
to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 2004;286:
L344-53.
Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J. A microanalytic
study of particles transport across the alveoli: Role of blood platelets.
Biomedicine 1977;27:354-7.
Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M,
Hoylaerts MF, et al. Passage of inhaled particles into the blood
circulation in humans. Circulation 2002;105:411-4.
Yamawaki H, Iwai N. Mechanisms underlying nano-sized airpollution-
mediated progression of atherosclerosis: Carbon black causes cytotoxic
injury-inflammation and inhibits cell growth in vascular endothelial
cells. Circ J 2006;70:129-40.
Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon
nanotubes on human HEK293 cells. Toxicol Lett 2005;155:73-85.
Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al.
Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol
;16:437-45.
Fechter LD, Johnson DL, Lynch RA. The relationship of particle size to
olfactory nerve uptake of a non-soluble form of manganese into brain.
Neurotoxicology 2002;23:177-83.
Olanow CW. Manganese-induced Parkinsonism and Parkinson’s disease.
Ann N Y Acad Sci 2004;1012:209-23.
Hoet P, Bruske-Hohlfeld I, Salata O. Nanoparticles-known and unknown
health risks. J Nanobiotechnol 2004;2:12.
Szentkuti L. Light microscopical observations on luminally administered
dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus
gel layer of the rat distal colon. J Control Release 1997;46:233-42.
Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the
rat gastrointestinal mucosa: quantitation and particle size dependency.
J Pharm Pharmacol 1990;42:821-6.
Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002;347:
-29.