Dendrimers - reflections on host-guest interaction mechanism towards solubility enhancement
Main Article Content
Abstract
decade, dendrimers have emerged as highly promising drug delivery modules because of their unique structure and properties. Solubility enhancement is an important aspect of dendrimers and this is a synergy with site-specific drug delivery. The hydrophobic guests when entrapped in the hydrophobic channels of dendrimers are solubilized in the aqueous solution. The present article explores the various complex interaction mechanisms between the dendrimer and a bioactive. Hence the
objective of this review is to reflect the host-guest interactions with the potential role of the proposed system, to enhance
drug solubility and bioavailability.
Downloads
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.
References
Martin A, Bustamante P, Chun AH. States of Matter. 4th ed. Vol. 1.
Maryland: Lippincott Williams and Wilkins; 200. p., 21-3.
Khalil SA, Abdallah OY, Moustafa MA. The use of solubility parameter
as an index of drug activity Canadian J Pharm Sci. 1976;121-6.
Khalil SA, Martin AN. Drug transport through model membrane and its
correlation solubility parameters. J Pharm Sci. 1967;56:1225-33.
Adjei A, Newburger J, Stavchansky S, Martin A. Membrane solubility
parameter and in-situ release of theophylline. J Pharm Sci 1984;73:742-5.
Beezer AE, King AS, Martin IK, Mitchel JC, Twyman LJ, Wain CF.
Dendrimers as potential drug carriers; encapsulation of acidic
hydrophobes within water soluble PAMAM dendrimers. Tetrahedron
;59:3873-80.
Park KM, Lee MK, Hwang KJ, Kim CK. Phospholipid based microemulsions
of flurbiprofen by the spontaneous emulsification process. J Pharm Sci
;183:145-54.
Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, et al. A new
class of polymers: Starburst-dendritic macromolecules. Polymer Journal
;17:117-32.
Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery
with dendrimers: Comparison of the releaser kinetics of covalently
conjugated drug and non-covalent drug inclusion complex. Adv Drug
Deliv Rev 2005;57:2203-14.
Liu M, Kono K, Frechet JM. Water soluble dendritic unimolecular
micelles: Their potential as drug delivery agents. J Control Release
;65:121-31.
Zeng F, Zimmerman SC. Dendrimers in Supramolecular Chemistry: From
Molecular Recognition to Self-Assembly. Chem Rev 1997;97:1681-712.
Jain NK, Khopade AJ. Controlled and Novel Drug Delivery. 1st ed.
New Delhi: CBS Publishers and Distributors; 2001. p. 361-75.
Gupta U, Agashe HB, Asthana A, Jain NK. Dendrimers: Novel polymeric
nanoarchitectures for solubility enhancement. Biomacromolecules
;7:649Â 8.
Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH.
Unimolecular micelles. Angew Chem International Ed Engler
;30:1178-80.
Naylor AM, Goddard III WA, Kiefer GE, Tomalia DA. Starburst
dendrimers: 5. Molecular shape control, Journal of American Chemical
Society 1989;111:2339-41.
Hawker CJ, Wooley KL, Frechet JM. Unimolecular micelles and
globular amphiphiles: Dendritic macromolecules as novel recyclable
solubilization agents. Journal Chemical Society Perkin Trans
;1:1287-97.
D’Emanuel A, Jevprasesphant R, Penny J, Attwood D. The use of a
dendrimer propranolol prodrug to bypass efflux transporters and
enhance oral bioavailability. J Control Release 2004;95:447-53.
Pistolis G, Malliaris A, Paleos M, Tsiourvas PK. Study of Poly
(amidoamine) Starburst Dendrimers by flurorescence probing, Langmuir
;13:5870.
Kumar PV, Asthana A, Dutta, T, Jain NK. Intracellular macrophage
uptake of rifampicin loaded mannosylated dendrimers. J Drug Target
;14:546-56.
Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of
Guest Molecules into a Dendritic Box. Science 1994;266:1226-9.
Jansen JF, Meijer EW, de Brabander-van den Berg EM. Bengal Rose
dendritic box, Macromolecular Symposia 1996;102:27-33.
Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: From
biomimicry to drug delivery and biomedical applications. Drug Discov
Today 2001;6:427-36.
Newkome GR, Woosley BD, He E, Morefield CN, Guther R, Baker GR,
et al. Supromolecular chemistry of flexible, dendritic-based structure
employing molecular recognition, Chemical Communications
;2737-8.
Prieto MJ, Bacigalupe D, Pardini O, Amalvy JI, Ventarini C, Morilla MJ,
et al. Nanomolar cationic dendrimeric sulfadiazine as potential
antitoxoplasmic agent. Int J Pharm 2006;326:160-8.
Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. The synthesis
of water-soluble dendrimers, and their application as possible drug
delivery systems. Tetrahedron Letters 1999;40:1743-6.
Chauhan AS, Jain NK, Diwan PV, Khopade AJ. Solubility enhancement
of indomethacin with poly (amidoamine) dendrimers and targeting to
inflammatory regions of arthritic rats. J Drug Target 2004;12:575-83.
Wiwattanapatapee R, Jee RD, Duncan R. PAMAM dendrimers as potential
oral drug delivery systems dendrimer complexes with piroxicam.
Proceedings of the International Symposium on Controlled Release of
Bioactive Materials 1999;26:241.
Yang H, Morris JJ, Lopina ST. Polyethylene glycol-polyamidoamine
dendritic micelle as solubility enhancer and the effect of the length of
polyethylene glycol arms on the solubility of pyrene in water. J Colloid
Interface Sci 2004;273:148-54.
Yiyun C, Tongwen X. Solubility of nicotinic acid in polyamidoamine
dendrimer solutions. Eur J Med Chem 2005;40:1384-9.
Devarakonda B, Hill RA, De Villiers MM. The effect of PAMAM dendrimer
generation size and surface functional groups on the aqueous solubility
of nifedipine. Int J Pharm 2004;284:133-40.
Santo M, Fox MA. Hydrogen bonding interactions between starburst
dendrimers and several molecules of biological interest. Journal of
Physical Organic Chemistry 1999;12:293.
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A.
Polyamidoamine Starburst dendrimers as solubility enhancers. Int
J Pharm 2000;197:239-41.
Baars ML, Kleppinger R, Koch MJ, Yeu SL, Miejer EW. The Localization
of Guests in Water-Soluble Oligoethyleneoxy-Modified Poly (propylene
imine) Dendrimers This work was supported by the Netherlands
Foundation for Chemical Research (CW), with financial aid from the
Netherlands Organisation for Scientific Research (NWO). The authors
thank Stefan Meskers, Harry Dekkers, Marcel van Genderen, and Rint
Sijbesma for stimulating discussions. DSM Research is acknowleged
for providing the poly(propyleneimine) dendrimers. M.B. and R.K.
acknowledge financial support under the TMR/LSF program of the
European Union (No. ERBFMGECT980134) to the EMBL Hamburg
outstation. Angew Chem Int Ed Engl 2000;39:1285-8.
Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM.
Preparation, cellular transport, and activity of polyamidoamine- ased
bdendritic nanodevices with a high drug payload. Biomaterials
;27:660-9.
Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, et al.
Dendrimer mediated transdermal delivery: Enhanced bioavailability
of indomethacin. J Control Release 2003;90:335-43.
Namazi H, Adeli M. Dendrimers of citric acid and poly (ethylene glycol)
as the new drug-delivery agents. Biomaterials 2005;26:1175-83.
Asthana A, Chauhan AS, Diwan PV, Jain NK. Poly(amidoamine) (PAMAM) dendritic nano-structures for controlled site-specific delivery of
anti- nflammatory active ingredient. AAPS Pharm Science Tech
i2005;6:536-42.
Najlah M, Freeman S, Attwood D, D’Emanuele A. Synthesis,
characterization and stability of dendrimer prodrugs. Int J Pharm
;308:175-82.
Yiyun C, Tongwen X. Dendrimers as potential drug carriers part I
solubilization of non-steroidal anti-inflammatory drugs in the presence
of polyamidoamine dendrimers. Eur J Med Chem 2005;40:1188-92.
Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drug complexation
in vitro release and cellular entry of dendrimers and hyperbranched
polymers. Int J Pharm 2003;259:143-60.
Duncan R, Malik N. Dendrimers: Biocompalibility and potential
for delivery of anticancer agents. Proceedings of the International
Symposia on Control Release Bioactive Materials 1996;23:105-6.
Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core
dendritic polymer. J Control Release 1999;57:244-57.
Khopade AJ, Caruso F, Tripathi P, Nagaich S, Jain NK. Effect of dendrimer on entrapment and release of bioactive from liposomes. Int J Pharm 2002;232:157-62.
Purohit G, Sakthivel T, Florence AT. Interaction of cationic partial
dendrimers with charged and neutral liposomes. Int J Pharm
;214:71-6.
Al-Jamal KT, Sakthivel T, Florence AT. Dendriosomes: Cationic lipodic
dendron vesicular assemblies. Int J Pharm 2003;254:33-6.
Ooya T, Lee J, Park K. Effects of ethylene glycol based grafts, star shaped and dendritic polymers on solubilization and controlled release of
Paclitaxel. J Control Release 2003;93:121-7.
Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamido- mine a dendrimers having poly(ethyleneglycol) grafts and their ability to
encapsulate anticancer drugs. Bioconjug Chem 2000;11:910-7.
Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulatecarrier of fluorouracil., Int J Pharm 2003;257:,111-24.