Polymers used in ocular dosage form and drug delivery systems

Main Article Content

Vijay D Wagh
Beena Inamdar
M K Samanta

Abstract

Topical application of drugs to the eye is most popular and well-accepted route of administration for the treatment of various eye disorders. A variety of ocular dosage form and drug delivery systems, including a controlled release of the
drug, drug targeting, and penetration enhancement of the drug, have been investigated. Polymers have been widely used as the drug carrier for controlled-release systems. Polymers release the drug as they themselves degrade and are sometimes finally absorbed within the body. In this article, several ocular drug delivery systems have discussed using different kinds of
polymers and their acceptance over conventional.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wagh, V. D., Inamdar, B., & Samanta, M. K. (2014). Polymers used in ocular dosage form and drug delivery systems. Asian Journal of Pharmaceutics (AJP), 2(1). https://doi.org/10.22377/ajp.v2i1.157
Section
Articles

References

Tripathi KD. Cholinergic drugs, in essential of medical pharmacology,

th ed. Delhi: Jaypee Pub; 2003. p. 85-9.

Sayako EM, Paul RL. Goodmans and Gilman’s The pharmacological basis

of therapeutics. In: Hardman JG. In ocular pharmacology, 10th ed, 2001.

p. 1823-9.

Chein YW. Novel drug delivery system: Fundamentals, developmental

concepts, biomedical assessments, drug and pharmaceutical sciences,

nd ed, New York: Marcel Dekker Inc; 1992. p. 269-71.

Lambert G, Guilatt RL. Current ocular drug delivery challenges. Drug

Dev Report Industry Overview Deals 2005;33:1-2.

Batchelor H. Novel bioadhesive formulations in drug delivery, the drug

delivery companies report. Tech Ind Overviews 2004;17:1-4.

Koevary SB. Pharmacokinetics of topical ocular drug delivery: Potential

uses for the treatment of the posterior segment and beyond. Curr Drug

Metab 2003;4:213-22.

Chrai SS, Robinson JR. Ocular evaluation of methylcellulose vehicles in

albino rabbits. J Pharm Sci 1974;61:1218-23.

Hui HW, Robinson JR. Ocular drug delivery of progesterone using a

bioadhesive polymer. Int J Pharm 1985;26:203-13.

Saettone MF, Chetoni P, Torraea MT, Burgalassi S, Giannacinni B.

Evaluation of mucoadhesive properties and in vivo activity of ophthalmic

vehicle based on hyloronic acid. Int J Pharm 1989;51:203-11.

Alonso MJ, Sanchez A. The potential of Chitosan in ocular drug delivery. J Pharm Pharmacol 2003;55:1451-63.

Loftsson T, Masson M. Cyclodextrins in topical drug formulations theory

and practices. Int J Pharm 2001;225:15-30.

Eckart B, Uwe P. Immunomodulatory therapy in ophthalmology: Is there a place for topical application? Ophthalmologica 2004;218:359-67.

Jansen T, Xhonneur B, Mesens J, Borgers M. Beta-cyclodextrins as

vehicles in eye-drop formulations: An evaluation of their effects on

rabbit corneal epithelium. Lens Eye Tox Res 1990;7:459-68.

Aktas Y, Unlu N orhan M, Irkec M, Hincal AA. Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine, Drug Dev Ind Pharm 2003;29:223-30.

Baydoun L, Furrer P, Gurny R, Müller-Goymann CC. New surface-active

agent for ophthalmic formulations: Evaluation of ocular tolerence. Eur

J Pharm Biopharm 2004;58:169-75.

Einmahl S. Therapeutics applications of viscous and injectable

poly(ortho esters). Adv Drug Deliv Rev 2001;53:45-73.

Ghelardi E, Tavanti A, Davini P, Celandroni F, Salvetti S, Parisio E, et al.

Mucoadhesive polymer extracted from tamarind seed improves the

intraocular penetration and efficacy of rufloxacin in topical treatment

of experimental bacterial keratitis. Antimicrob Agents Chemother

;48:3396-401.

Zignani M, Tabatabay C, Gurny R. Topical semi-solid drug delivery:

Kinetics and tolerance of ophthalmic hydrogels. Adv Drug Deliv Rev

;16:51-69.

Ali Y, Lehensaari K. Industrial perspective in ocular drug delivery. Adv

Drug Deliv Rev 2006;58:1258-68.

Kim EY, Gao ZG, Park JS, Li H, Han K. rhEGF/HPbetaCD complex in

Poloxamer gel for ophthalmic delivery. Int J Pharm 2002;233:159-67.

Lindell K, Engstrom S. In-vitro release of timolol maleate from an in-situ gelling polymer system. Int J Pharm 1993;95:219-28.

Kumar S, Himmelstein KJ. Modification of in situ gelling behaviour

of carbopol solutions by hydroxypropyl methylcellulose. J Pharm Sci

;84:344-34.

Paulsson M, Hagerstrom H, Edsman K. Rheological studies of the

gelation of deacetylated gellan gum (GelriteR) in physiological

conditions. Eur J Pharm Sci 1999;9:99-105.

Sanzgiri YD, Maschi S, Crescenzi V, Callegaro L, Topp EM, Stella VJ. Gellan-based systems for ophthalmic sustained delivery of methylprednisolone. J Control Release 1993;26:195-201.

Debbasch C, Bruneau S, la Salle D, Brignole F, Rat P, Warnet JM, et al.

Cytoprotective effects of hyaluronic acid and carbomer 934P in ocular

surface epithelial cells. Invest Ophthalmol Visual Sci 2002;43:3409-15.

Li J, Xu Z. Physical characterisation of a chitosan-based hydrogel delivery system. J Pharm Sci 2002;91:1669-77.

Kyyronen K, Hume L, Benedetti L, Urtti A, Topp E, Stella V.

Methylprednisolone esters of hyaluronic acid in ophthalmic drug

delivery: In vitro and in vivo release. Int J Pharm 1992;80:161-9.

Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in-situ forming ophthalmic drug delivery system from alginates undergoing gelation in the eye.J Control Release 1997;44:201-8.

Lin H-R, Sung KC. Carbopol/pluronic phase change solutions for

ophthalmic drug delivery. J Control Release 2000;69:379-88.

Desai SD, Blanchard J. Pluronic F127-based ocular delivery system

containing biodegradable polyisobutylcyanoacrylate nanocapsules of

pilocarpine. Drug Deliv 2007;4:201-7.

Wilson CG, Zhu YP, Frier M, Rao LS, Gilchrist P, Perkins AC. Ocular

contact time of a carbomer gel (GelTears) in humans. Br J Ophthalmol

;82:1131-4.

Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug

Deliv Rev 1995;16:95- 106.

Sultana Y, Zafar S, Ali A. Enhanced ocular bioavailability with sol to gel

system of pefloxacin mesylate: In-vitro and in-vivo studies. J Sci Pharm

;4:5-10.

Lee YC, Millard JW, Negvesky GJ, Butrus SI, Yalkowsky SH. Formulation

and in vivo evaluation of ocular insert containing phenylephrine and

tropicamide. Int J Pharm 1999;182:121-6.

Gurny R, Baeyens V, Kaltsatos V, Boisrame B, Fathi M. Evaluation of

soluble bioadhesive ophthalmic drug inserts (BODIR) for prolonged

release of gentamicin: Lachrymal pharmacokinetics and ocular

tolerance. J Ocul Pharmacol Ther 1998;14:263-72.

Hiratani H, Fujiwara A, Tamiya Y, Mizutaniand Y, Alvarez C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 2005;26:1293-8.

Grzeskowiak E. Technology and biopharmaceutical availability of solid

ocular inserts containg sulfadicramide and some promoters. Acta Pol

Pharm 1998;55:205-10.

Wang G, Tucker IG, Roberts MS, Hirst LW. In vitro and in vivo evaluation in rabbits of a controlled release 5-flurouracil subconjunctival implant based on poly(D, L-lactide-co-glycolide). Pharm Res 1996;13:1059-64.

Hornhof M, Weyenberg W, Ludwig A, Schnuerch BA. Mucoadhesive

ocular insert based on thiolated poly (acrylic acid): Development and

in vivo evaluation humans. J Control Release 2003;89:419-28.

Haesslein A, Ueda H, Hacker MC, Jo S, Ammon DM, Borazjani RN, et al.

Long-term release of fluocinolone acetonide using biodegradable

fumarate-based polymers release. J Control Release 2006;114:251-60.

Joshi A. Microparticulates for ophthalmic drug delivery spring. J Ocul

Pharmacol 1994;10:29-45.

Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular

delivery systems. Adv Drug Deliv Rev 1995;16:61-73.

De TK, Hoffman AS. An ophthalmic formulation of a beta-adrenoceptor

antagonist, levobetaxolol, using poly (acrylic acid) nanoparticles

as carrier: Loading and release studies. J Bioact Compatible Polym

;16:20-31.

De TK, Bergey EJ, Chung SJ, Rodman DJ, Bharali DJ, Prasad PN.

Polycarboxylic acid nanoparticles for ophthalmic drug delivery: An ex

vivo evaluation with human cornea. J Microencapsul 2004;21:841-55.

Leucuta SE. The kinetics of in vitro release and the pharamcokinetics

of miotic response in rabbits of gelatin and albumin microspheres.

Int J Pharm 1989;54:71-8.

Kyyronen K, Hume L, Benedetti L, Urtti A, Topp E, Stella V.

Methylprednisolone esters of hyaluronic acid in ophthalmic drug

delivery: in vitro and in vivo release. Int J Pharm 1992;80:161-9.

Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid

nanoparticles (SLN) as ocular delivery systems for tobramycin. Int J

Pharm 2002;238:241-5.

Jaskari T, Vuorio M, Kontturi K, Manzanares JA, Hirvonen J. Ion-

exchange fibers and drugs: An equilibrium study. J Control Release

;70:219-29.

Ramaiah S, Promod Kumar TM. Studies on Biopolymers for ophthalmic

drug delivery. J Macromolecule Sci Part A 2007;44:229-34.

Jani R, Gan O, Ali Y, Rodstrom R, Hancock S. Ion exchange resin for

ophthalmic drug delivery. J Ocul Pharmacol Spring 1994;10:57-67.

Moreau JM, Dajcs JJ, Thibodeaux BA, Traidej M, Austin MS, MArquart ME,

et al. Effectiveness of ciprofloxacin and ofloxacinin a prophylaxis model

of Staphylococcus keratitis. Cornea 2001;20,:878-80.

Lele BS, Hoffman AS. Insoluble ionic complexes of polyacrylic acid with

a cationic drug for use as a mucoadhesive, ophthalmic drug delivery

system. J Biomater Sci Polym Ed 2000;11:1319-31.

Chang. Stable suspension formulations of bioerodible polymer matrix

microparticle incorporating drug-loaded ion exchange resin particles.

; U.S. Patent 5275820.

Harvey AR. Combined therapies in the treatment of neurotrauma:

Polymers, bridges and gene therapy in visual system repair. Nanotechnol

Neurosci 2007;4:300-5.

Sharon Y, Wong, Jeisa MP, Putnam D. Progress in polymer science. Poly

Biomed Appl 2007;32:799-837.

Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar CF.

Non-viral ocular gene therapy: Potential ocular therapeutic avenues.

Adv Drug Deliv Rev 2006;58:1224-42.

Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues

by eye drops of poly (ethylene oxide)-poly(propylene oxide)-

poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther

;8:999-1004.

Julie AW, Tiffany LH, Lonnie DS. Non-viral vector delivery from PEG-

hyaluronic acid hydrogel. J Control Release 2007;120:233-41.

Chun KW, Lee JB, Kim SH, Park TG. Controlled release of plasmid

DNA from photo-cross-linked pluronic hydrogel. Biomaterials

;26:3319-26.

Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug

delivery. Adv Drug Deliv Rev 2006;58:1131-5.

Hudde T, Rayner SA, Comer RM, Weber M, Isaacs JD, Waldmann H,

et al. Activated polyamidoamine dendrimers, a non-viral vector for

gene transfer to the corneal endothelium. Gene Ther 1999;6:939-43.

Eljarrat-Binstock E, Domb AJ. Iontophoresis: A non-invasive ocular drug

delivery. J Control Release 2006;110:479-89.

Stamatialis DF, Rolevink HM, Girones M, Nymeijer DC, Koops GH. In Vitro

evaluation of a hydroxypropyl cellulose gel system for transdermal

delivery of timolol. Curr Drug Deliv 2004;1:1-9.

Baeyens V, Kaltsatos V, Boisrame B, Varesio E, Veuthey JL, Faithi M, et al.

Optimised release of dexamethasone and gentamicin from a soluble

ocular insert for the treatment of external ophthalmic infections.

J Control Release 1998;52:215-20.

Raiskup-Wolf F, Eljarrat-Binstock E, Rehak M, Domb A, Frucht-

Pery. Delivery of gentamicin to the rabbit eye using hydrogel and

iontophoresis. J Cesk Slov Oftalmol 2006;62:175-82.