Design and Optimization of Modified Tamarind Gum-based Floating-bioadhesive Tablets of Verapamil Hydrochloride

Main Article Content

Kailas K. Mali


Aim: The present investigation deals with the formulation of floating-bioadhesive matrix tablets of verapamil hydrochloride (VH). The main objective of this work was to overcome the limitations of the conventional floating matrix tablets. Materials and Methods: Hydroxypropyl methylcellulose (HPMC) K15M was used as a matrix-forming agent whereas carboxymethyl tamarind gum (CMTG) was used to promote bioadhesion. Systematic optimization was performed using a central composite design with two independent variables and six dependent variables. Tablets were prepared by using the wet granulation method. The effect of polymer ratio (HPMC:CMTG) and sodium bicarbonate (SB) concentration on the total floating time (TFT), floating lag time (FLT), bioadhesion, swelling, and drug release (DR) was studied and optimized. Results and Discussion: Floating-bioadhesive matrix tablets of VH showed good physicochemical properties. The FLT was within the range of 2.87-14.41 min and TFT was more than 12 h. The tablets showed 17-30% of burst release in the 1st h and controlled release over a period of 12-h. DR and swelling were significantly (P < 0.05) affected by polymer ratio and concentration of SB in formulation. The polynomial mathematical models, generated for various response variables using multiple regression analysis, were found to be statistically significant (P < 0.05). Optimized batch showed FLT of 6.14 min, bioadhesion of 17.23 g, swelling of 74.83% at 5 h, and DR of 75.48% at 10 h, with anomalous release mechanism. The observed values were near to the predicted values obtained by the experimental design. Conclusion: The floating-bioadhesive tablets of VH prepared using HPMC and CMTG exhibited a potential to retain and control the release of drug in stomach for more than 12 h and may be used as an alternative to the conventional floating tablets of VH.


Download data is not yet available.

Article Details

How to Cite
Mali, K. K. (2016). Design and Optimization of Modified Tamarind Gum-based Floating-bioadhesive Tablets of Verapamil Hydrochloride. Asian Journal of Pharmaceutics (AJP), 10(04).